
www.manaraa.com

Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-21-2019

Analytical Models and Control Design Approaches
for a 6 DOF Motion Test Apparatus
Kyra L. Schmidt

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Aerodynamics and Fluid Mechanics Commons, Dynamics and Dynamical Systems
Commons, and the Fluid Dynamics Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Schmidt, Kyra L., "Analytical Models and Control Design Approaches for a 6 DOF Motion Test Apparatus" (2019). Theses and
Dissertations. 2232.
https://scholar.afit.edu/etd/2232

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F2232&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F2232&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F2232&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F2232&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/222?utm_source=scholar.afit.edu%2Fetd%2F2232&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/281?utm_source=scholar.afit.edu%2Fetd%2F2232&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/281?utm_source=scholar.afit.edu%2Fetd%2F2232&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/201?utm_source=scholar.afit.edu%2Fetd%2F2232&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/2232?utm_source=scholar.afit.edu%2Fetd%2F2232&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

www.manaraa.com

ANALYTICAL MODELS AND CONTROL
DESIGN APPROACHES FOR A 6 DOF

MOTION TEST APPARATUS

THESIS

Kyra L. Schmidt, 2nd Lt, USAF

AFIT-ENY-MS-19-M-245

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

www.manaraa.com

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

www.manaraa.com

AFIT-ENY-MS-19-M-245

ANALYTICAL MODELS AND CONTROL DESIGN APPROACHES FOR A 6

DOF MOTION TEST APPARATUS

THESIS

Presented to the Faculty

Department of Aeronautics and Astronautics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Aeronautical Engineering

Kyra L. Schmidt, B.S.A.E.

2nd Lt, USAF

March 21, 2019

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

www.manaraa.com

AFIT-ENY-MS-19-M-245

ANALYTICAL MODELS AND CONTROL DESIGN APPROACHES FOR A 6

DOF MOTION TEST APPARATUS

THESIS

Kyra L. Schmidt, B.S.A.E.
2nd Lt, USAF

Committee Membership:

Dr. Richard G. Cobb
Chair

Maj Costantinos Zagaris, Ph.D.
Member

Capt Joshuah A. Hess, Ph.D.
Member

www.manaraa.com

AFIT-ENY-MS-19-M-245

Abstract

Wind tunnels play an indispensable role in the process of aircraft design, providing a

test bed to produce valuable, accurate data that can be extrapolated to actual flight

conditions. Historically, time-averaged data has made up the bulk of wind tunnel

research, but modern flight design necessitates the use of dynamic wind tunnel test-

ing to provide time-accurate data for high frequency motion. This research explores

the use of a 6 degree of freedom (DOF) motion test apparatus (MTA) in the form

of a robotic arm to allow models inside a subsonic wind tunnel to track prescribed

trajectories to obtain time-accurate force and moment coefficients. Specifically, dif-

ferent control laws were designed, simulated, and integrated into a 2 DOF model

representative of the elbow pitch and wrist pitch joints of the MTA system to de-

crease positional tracking error for a desired end-effector trajectory. Stability of the

closed-loop systems was proven via Lyapunov analysis for all of the control laws, and

the control laws proved to decrease tracking error during the trajectory case studies.

An adaptive sliding mode control scheme was chosen as most suitable to simulate on

the 6 DOF model due to the small tracking error as compared to the other control

schemes and the availability of parameters of the actual MTA system when subject

to the time-varying aerodynamics of the wind tunnel.

iv

www.manaraa.com

Acknowledgements

I dedicate this to my family, without whom I never would have been able to finish.

I would like to extend my gratitude to all those who made this research possible,

especially to Dr. Cobb for his unnecessarily outstanding patience and understanding.

Kyra L. Schmidt

v

www.manaraa.com

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Tables . xii

I. Introduction . 1

1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Methodology. 5
1.4 Limitations . 6
1.5 Overview of Subsequent Chapters . 6

II. Literature Review . 8

2.1 Reference Frames . 8
2.2 Coordinate Transforms . 11
2.3 Motion Test Apparatus Kinematics . 13
2.4 Linear vs. Nonlinear Systems . 26
2.5 Dynamic Model . 28
2.6 Control Methods . 36

2.6.1 Kinematic Control . 37
2.6.2 Dynamic Model-Based Control . 42

2.7 Experimental Methods . 52
2.7.1 Experimental Measurements . 53

2.8 Chapter II Summary . 55

III. AFIT MTA System Description . 56

3.1 Motion Test Apparatus Design . 56
3.1.1 MTA Arm Manipulator . 56
3.1.2 MTA Control System . 57

3.2 MTA Operation . 59
3.3 Desired Trajectory Files . 62

3.3.1 Format . 62
3.3.2 Design . 63

3.4 MTA Control System . 65
3.5 Simulations . 68

3.5.1 2 DOF System . 68
3.5.2 6 DOF System . 70

vi

www.manaraa.com

Page

3.6 Experimental Setup . 71
3.6.1 Wind Tunnel Models and Model Support Sting 71
3.6.2 Sensors and Measurements . 73
3.6.3 Test Plan . 80

3.7 Chapter III Summary . 81

IV. Analysis and Results . 82

4.1 2 DOF Simulation . 82
4.1.1 Manipulator Workspace . 84
4.1.2 PD Control . 88
4.1.3 Feedback Linearization . 99
4.1.4 Sliding Mode Control . 102
4.1.5 Adaptive Control . 111

4.2 Summary of 2 DOF results . 116
4.3 6 DOF Model . 117
4.4 Experiment . 118
4.5 Chapter IV Summary . 119

V. Conclusions and Recommendations . 122

5.1 Summary of Results . 122
5.2 Significance of Research . 123
5.3 Recommendations for Future MTA Testing . 123

Appendix A. Matlab®, C++, and LabVIEW code . 126

Appendix B. Drawings of Test Fixtures Models . 164

Bibliography . 169

vii

www.manaraa.com

List of Figures

Figure Page

1. Air Force Institute of Technology 6 DOF Motion Test
Apparatus with major components labeled. [26] . 3

2. Subsonic wind tunnel reference frames with MTA [5] 9

3. Model angular orientation defined within the wind
tunnel [21] . 12

4. MTA kinematic reference frames. Lengths are in
meters, and angular displacements are set to zero. [41] 15

5. Geometrical definitions of angles and lengths between
the torso yaw, shoulder pitch, and wrist pitch joints [41] 21

6. Geometrical definitions of angles and lengths between
the torso yaw, shoulder pitch, and wrist pitch joints 21

7. 2 DOF model of robotic manipulator with relevant
dimensions identified [46] . 30

8. Basic architecture of a closed-loop system [46] . 36

9. Block diagram of SISO Feedforward controlled system
[46] . 43

10. Block diagram of MRAC system [33] . 49

11. Block diagram of MP system [14] . 51

12. Emergency button on MTA safety fence . 57

13. MTA computer in subsonic wind tunnel laboratory at
AFIT . 58

14. Block diagram of PD control system for each joint 67

15. 2 DOF model of robotic manipulator with end-effector
uncertainties . 69

16. Original Matlab® 3D robotic model of PUMA 762 [37] 71

17. AFIT MTA model support sting [41] . 72

viii

www.manaraa.com

Figure Page

18. AFIT MTA model support sting in 9 inch diameter
cut-out in plexiglass window [41] . 73

19. ATI Nano25 sensing reference frame [3] . 76

20. MicroStrain® 3DM-GX1 sensing reference frame [2] 78

21. Elbow manipulator reachable workspace . 84

22. Inverse kinematics for the planar 2 DOF
elbow-manipulator [28] . 86

23. Computed joint angles from trajectory described by
ydes = 1.346 + 0.5 sin (2πt), zdes = −0.3 + 0.8 sin (2πt) 87

24. Desired and simulated joint angles over time for
periodic joint input (1 Hz) using PD control . 91

25. Desired and simulated joint angles over time for step
input using PD control . 91

26. Control input and error in state variables over time with
periodic joint inputs (1 Hz) using PD control . 92

27. Control input and error in state variables over time with
step input using PD control . 92

28. Comparison of desired end effector trajectory and
simulated trajectory using PD control with a 1 Hz input 93

29. Desired and simulated joint angles over time for
periodic joint input (1 Hz) using PD-Feedforward control 97

30. Desired and simulated joint angles over time for step
input using PD-Feedforward control . 97

31. Control input and error in state variables over time with
periodic joint input (1 Hz) using PD-Feedforward control 98

32. Control input and error in state variables over time with
step input using PD-Feedforward control . 98

33. Comparison of desired, periodic end effector trajectory
(1 Hz) and simulated trajectory using PD-Feedforward
control . 99

ix

www.manaraa.com

Figure Page

34. Desired and simulated joint angles over time for periodic
input using Feedback Linearization with a 1 Hz input 100

35. Control input and error in state variables over time with
periodic inputs (1 Hz) using Feedback Linearization 100

36. Comparison of desired end effector trajectory and
simulated trajectory using feedback linearization with a
1 Hz input . 101

37. Desired and simulated joint angles over time for
periodic input (1 Hz) using sliding mode control,
constant boundary layer . 105

38. Desired and simulated joint angles over time for
periodic input (1 Hz) using sliding mode control,
time-varying boundary layer . 105

39. Control input and error in state variables over time for
periodic input (1 Hz) using sliding mode control,
constant boundary layer . 107

40. Control input and error in state variables over time for
periodic input (1 Hz) using sliding mode control,
time-varying boundary layer . 107

41. Actual and estimated parameters for periodic input (1
Hz) using sliding mode control, constant boundary layer 108

42. Actual and estimated parameters for periodic input (1
Hz) using sliding mode control, time-varying boundary
layer . 108

43. Sliding surface and boundary layer using sliding mode
control, constant boundary layer with a 1 Hz input 109

44. Sliding surface and boundary layer using sliding mode
control, time-varying boundary layer with a 1 Hz input 109

45. Comparison of desired end effector trajectory and
simulated trajectory using sliding mode control with a
constant boundary layer with a 1 Hz input . 110

x

www.manaraa.com

Figure Page

46. Comparison of desired end effector trajectory and
simulated trajectory using sliding mode control with a
time-varying boundary layer with a 1 Hz input . 110

47. Desired and simulated states using sliding mode control
with 0% inaccuracy in parameters and static
end-effector values with a 1 Hz input . 112

48. Comparison of desired end effector trajectory and
simulated trajectory using sliding mode control with 0%
inaccuracy in parameters and static end-effector values
with a 1 Hz input . 113

49. Desired and simulated joint angles over time for periodic
input (1 Hz) using model reference adaptive control 114

50. Actual and calculated parameters over time for periodic
input (1 Hz) using model reference adaptive control 114

51. Control input and error in state variables over time
using model reference adaptive control with a 1 Hz input 115

52. Desired and simulated end effector trajectories using
model reference adaptive control with a 1 Hz input 115

53. PUMA 762 model updated with MTA graphics and
kinematics in zero angle configuration in MTA inertial
reference frame . 118

xi

www.manaraa.com

List of Tables

Table Page

1. Denavit-Hartenberg parameters for the AFIT MTA 39

2. MTA joint hardware components [41] . 57

3. Linux login commands . 59

4. MTA motion commands . 60

5. Sample Home Trajectory File [38] . 62

6. Sample Dynamic Trajectory File [9] . 63

7. ATI Nano25 F/T transducer technical specifications [3] 74

8. MicroStrain® 3DM-GX1 IMU technical specifications [2] 78

9. Mass properties of 2 DOF system including sting 83

10. MTA joint ranges defined per the RE2, Inc. User
Manual [38] . 85

11. Qualitative comparison of 2 DOF control schemes 121

xii

www.manaraa.com

ANALYTICAL MODELS AND CONTROL DESIGN APPROACHES FOR A 6

DOF MOTION TEST APPARATUS

I. Introduction

1.1 Motivation

Although modern computational methods and numerical models are at their most

powerful since inception, they alone cannot provide accurate-enough information to

sufficiently test and design the types of aerospace systems that are at the forefront

of current research. For instance, at the high angles of attack that some modern

aircraft can achieve, time-dependent aeroelastic effects become significantly more

prominent [20]. Likewise, small unmanned aircraft systems (SUAS) and micro air

vehicles (MAVs) are extremely demanding in terms of agility requirements and flying

qualities [38]. Furthermore, store separation presents a unique case in that neither the

aerodynamics nor the trajectory of the store after separation are steady. To improve

the performance and handling of all of the aforementioned systems requires a superior

understanding of basic flight mechanics and vehicle dynamics to update the models

of such systems. Fortunately, ongoing progress in the field of wind tunnel research

can provide the data necessary to refine the models.

Historically, wind tunnels have been used extensively to gather irreplaceable force

and moment data throughout the design stages of aerospace systems. For the nondi-

mensional parameters gathered from the tests to be accurately extrapolated to actual

flight conditions, many correction factors must be considered, such as the induced

vortices due to wall effects of the wind tunnel to the change in local wind velocity

1

www.manaraa.com

due to decreased cross-sectional area encountered at the item under test (IUT) [27].

Ideally, these correction factors should be enough to provide valuable data; however,

advances in modern flight technologies require improved fidelity of wind tunnel test-

ing and the models used to update them. One way to improve wind tunnel tests

is to do so dynamically. For example, a store after separation will follow a highly

nonlinear trajectory. In order for a wind tunnel test of store separation to be valid,

the experiment must be able to simulate the trajectory with minimal positional error

and to measure the relevant data with time accuracy. Similarly, aeroelastic effects

of flexible wing aircraft and other dynamic models require time-accurate simulation

and measurement as well. It has become necessary to be able to characterize these

potentially deleterious effects dynamically as opposed to averaging the data from a

static test because of the high frequencies at which they occur.

Dynamic testing proves useful as a tool to study the time-varying force and mo-

ment coefficients on a test article as the end effector tracks a trajectory. Although a

free-flying IUT would be the most representative model of an aircraft in flight, these

can be difficult to control as they must provide their own propulsion system. Alter-

natives include using either a free-motion rig or a forced-motion rig. A free-motion

rig does allow certain degrees of freedom such as free-to-roll or free-to-pitch motions

while a forced-motion rig forces the model to follow a precomputed path [34]. Specific

designs of these rigs differ depending on the laboratory and experiment-in-question.

One example of a forced-motion rig that has flexible applications is a model attached

to a sting controlled by a robotic arm to manipulate the IUT within the wind-tunnel

section. The Air Force Institute of Technology (AFIT) has procured such a device

referred to as the Motion Test Apparatus (MTA) for this purpose. The MTA has six

degrees-of-freedom (6 DOF) pictured in Figure 1 below which are actuated by motor

controllers.

2

www.manaraa.com

Figure 1. Air Force Institute of Technology 6 DOF Motion Test Apparatus with major
components labeled. [26]

1.2 Problem Statement

The MTA, manufactured by RE2, Inc., was originally designed to test MAVs at

the University of Florida-Research and Engineering Education Facility (REEF). Due

to the complications with relocation of the MTA to AFIT, including the significant

size difference in the wind tunnel test sections, the difference in intended tests, and

the short duration in which the relocating process occurred, validation and verifi-

cation of the MTA performance and functionality was not completed at the REEF.

Additionally, the modes of operation potentially available to the MTA at the REEF

are no longer viable for operation at AFIT. Therefore, it has become necessary both

to integrate the MTA hardware and to refine the software in order to better operate

in the AFIT wind tunnel. Since its integration to the AFIT subsonic wind tunnel,

attempts at characterization and control of the MTA have been conducted for simple

trajectories including cyclical and one-off motion [26, 41, 9]. However, only propor-

3

www.manaraa.com

tional control was used to improve positional tracking of the model for the wrist roll

degree of freedom only. The gains used in the proportional control were tuned man-

ually to find a marginal decrease in position error. Although proportional control is

one of the simplest methods for control of any system, many other control methods

are available for decreasing tracking error that are more suited for the applications of

the MTA. Specifically, because the end-effector of the MTA is subject to constantly

changing forces and moments due to the wind tunnel’s effects on the IUT, the control

laws in use must be able to account for the changes in uncertainties for such properties

at the end-effector. Using proportional control may allow for adequate use in small,

oscillatory motions, and increasing the proportional gain can improve performance.

However, as the test trajectories become more complex and nonlinear to model real-

life applications, a proportional control law can become unstable as gain increases,

and it may be nearly impossible to measure or even bound the uncertainties in the

force- and moment-coefficients, rendering the MTA useless for the test.

As such, there is room for improvement in design of the control laws, with respect

to robustness, further decreasing the tracking error, and extending the method to

more degrees of freedom. For instance, adding feed-forward control to the control

laws reduces lag during trajectory tracking [49]. In order to use feed-forward control,

however, the control law needs to estimate physical parameters that change over time.

This requires the use of adaptive control of some sort, a variety of which exist and

have been proven in similar systems.

Ideally in the long term, the goal for the AFIT MTA is to have zero tracking

error when following any prescribed trajectory even when subjected to unpredictable

aerodynamic forces and moments from the wind tunnel. With this capability, the

measurements on the test article will be solely due to aerodynamic effects as opposed

to interference from the MTA dynamics. While this may not be entirely achievable,

4

www.manaraa.com

to work towards that goal requires a working model of the MTA system so that

the control laws used will have some predictive capabilities when computing control

signals. To keep a reasonable scope for this study, the objectives are to derive a

dynamic model for the MTA on which to simulate control laws, integrate those control

laws onto the real MTA to test the same trajectories, and compare the results in order

to update the models and control schemes in an iterative way.

1.3 Methodology

The MTA is situated next to the AFIT Low-Speed Wind Tunnel (subsonic). A

sting attached to the end of the MTA extends into the test section of the wind tunnel

through a nine-inch circular access port in the plexiglass. The IUT is attached to

the end of the sting and is specifically manufactured to hold a Nano25 6-DOF force

balance. This sensor produces signals in the form of analog voltages corresponding

to the forces and moments experienced by the test model. The signals are sent to a

primary computer via a National Instruments (NI) Data Acquisition (DAQ) system

to be processed by LabVIEW software. To obtain model angle attitude data, a LORD

MicroStrain inertia measurement unit (IMU) is also attached to the MTA. The signals

from the IMU are collected by the DAQ via an RS-22 connection.

The MTA uses a secondary computer with a Linux operating system to perform

the user-input mission trajectory files. These trajectory files are defined by the user,

and can include a variety of dynamic tests. For the purposes of this research, test tra-

jectories can include simple oscillatory pitch and pitch-plunge motions to characterize

the MTA and to test the initial control laws. After the control laws are validated

for simple motions, more complex trajectories can be performed to simulate store

separation, for instance. Maneuvers such as store separation require all six DOFs of

the MTA to work in coordination. Tests can be run at varying wind-tunnel speeds

5

www.manaraa.com

and model configurations. Although testing to validate the control laws was initially

planned, limited testing was performed on the MTA.

After the data has been collected, post-processing is performed by importing the

data from NI LabVIEW into MATLAB. Ideally, the results consist of time-accurate

force- and moment-coefficient data that can be compared to existing CFD results, at

least for the store-separation case. Post-processing can also include comparisons of

the IMU data with encoder data from the MTA.

1.4 Limitations

The ideal outcome of this research is to decrease the tracking error down to zero

for the MTA with any model attachment and under any test conditions for abitrary

trajectories. However, this is not a realistic goal as the design of experiments cannot

be infinite, and the nonlinear nature of the system only allows for stability of the

control laws for a limited range of initial and operating conditions. Additionally, there

are physical and programmed constraints on the MTA to prevent damage but may

lessen the effect of the control laws. The MTA can only operate in the confined space

of the wind tunnel through a nine-inch access hole, limiting the available motion, but

which also limits the range of motion in which the MTA must robustly operate. The

primary focus of this research is to design and implement a more robust control and

improved tracking accuracy for prescribed trajectories. As such, the sensors and DAQ

systems will not be investigated despite their inevitable additions to the uncertainty

in the measured outputs of the system.

1.5 Overview of Subsequent Chapters

The remainder of this thesis is organized as follows. Chapter II details the im-

portant background information regarding the MTA and nonlinear control in gen-

6

www.manaraa.com

eral including relevant reference frames, coordinate transformations, and the MTA’s

forward and inverse kinematics. Chapter II also includes the dynamics for robotic

manipulators, control methods, and experimental methods as well as an overview of

relevant wind tunnel measurements that will be obtained.

Chapter III describes the experimental setup including the required equipment,

operation, and specifications for the MTA and the wind tunnel. Additionally, Chapter

III covers the design of the MTA including the control laws, simulation models, and

the intended experimental setup. This includes a brief discussion of the wind tunnel

models, the sensors and their measurements, and the data acquisition system.

Chapter IV contains the results of the simulated closed loop systems as well as

the corresponding stability analysis. Additionally, Chapter IV describes the 6 DOF

model as well as the intended experiments.

Chapter V discusses the conclusions and recommendations obtained from this

research, including a summary of results, significance of the research, and recommen-

dations for future MTA testing.

7

www.manaraa.com

II. Literature Review

Chapter Overview

This chapter provides an overview of information relevant to the MTA system

and current literature to solve the problem statement. It begins with definitions

of the reference frames and coordinate transformations used in the MTA system.

The chapter also details the forward and inverse kinematics capturing the motion of

the MTA. A brief discussion of the difference between linear and nonlinear systems is

followed by a derivation of the dynamic equations of motion for a robotic manipulator.

A brief review of current techniques in nonlinear characterization, control methods,

and experimentals methods for robotic manipulators is also presented. Additionally,

the chapter covers relevant measurements and calculations for dynamic wind tunnel

testing with emphasis on store separation.

2.1 Reference Frames

When discussing any dynamic problem, it is important to clearly define reference

frames. For a robotic manipulator controlling a model for a dynamic wind tunnel

test, there are four main references frames, depicted in Figure 2 that provide reference

points for describing the kinematics of the system. Each reference frame follows the

convention of the “right-hand rule” and forms an orthogonal set of x-, y-, and z-axes.

The wind tunnel reference frame, subscripted with a “w” in Figure 2, is statically

centered within the wind tunnel with zw-axis pointing down and the xw-axis pointing

in the direction of incoming wind from the wind tunnel pump. Typically, the wind

tunnel reference frame is considered fixed [31].

The second reference frame in consideration, with the subscript “b”, is the body-

fixed reference frame. It is fixed to the IUT, usually with the origin centered at the

8

www.manaraa.com

Figure 2. Subsonic wind tunnel reference frames with MTA [5]

9

www.manaraa.com

quarter-chord along the fuselage of model. Similar to the wind tunnel reference frame,

the zb-axis also points downward out the bottom of the IUT, while the xb-axis points

out the front of the model. Accordingly, the yb-axis points out the right wing.

The third reference frame of relevance is called the MTA-model reference frame.

As shown in Figure 2, the MTA-model reference frame, subscripted with “m”, is

coincident with the body-fixed reference frame except with rotated axes. The zm-

axis is the same as the zb-axis, still pointing down out the bottom of the IUT, but

the xm-axis is rotated 90°about the zb-axis to coincide with the yb-axis out the right

side of the model. The ym-axis then points in the opposite direction of the xm-axis,

out the back of the IUT. This reference frame exists because its origin is the model

control point, the point about which trajectories are executed, for which the MTA was

originally designed. The definition of the MTA-model reference frame is consistent

with other research [26, 41, 9].

The final reference frame, considered the “inertial” reference frame of the MTA,

is centered at the base of the MTA, directly under the torso yaw-joint on the floor.

This reference frame has the subscript “i” as seen in Figure 2. The zi-axis points into

the laboratory floor, while the xi-axis is parallel to the wind tunnel airflow, and the

yi-axis is perpendicular to the wind tunnel airflow but points away from the wind

tunnel. The MTA’s inertial reference frame is assumed to be fixed for all time and

not accelerating with respect to the whole system setup. Desired MTA trajectory

files are written with respect to the origin of the inertial reference frame [26].

Summarily, the MTA system uses both the traditional wind tunnel reference frame

and the body-fixed reference frame but also needs a third inertial frame in order to

define the user-input trajectory files. Due to the original design of the MTA, there

is a fourth MTA-model reference frame that is coincident to but rotated from the

body-fixed reference frame that will be used for deriving the kinematics of the MTA,

10

www.manaraa.com

as described in Section 2.2.

2.2 Coordinate Transforms

In order to derive the aerodynamic forces and moments acting on the model, a

coordinate transform between the body-fixed and the wind tunnel reference frames

must exist. Standard practices utilize an Euler-rotation angle sequence to define the

orientation and position of an IUT in a wind tunnel [31]. For the MTA, the orientation

of the IUT with respect to the freestream velocity can be described by the angular

rotations yaw, pitch, and roll, in that order. Yaw (ψ) is the rotation about the zw-axis.

Pitch (θ) is the rotation about the yb-axis. Roll (φ) is the angular rotation about the

xb-axis. Applying the Euler angles to the components of the velocity vector yields a

transformation matrix from the body-fixed frame to the wind tunnel reference frame,

given below in Equation 1 where “S” signifies the sine function and “C” signifies the

cosine function [31]. This rotation matrix is similar to the standard ZYX or 3-2-1

Euler transformation but differs in sign to match the reference frames described in

Section 2.1 [31].

vx

vy

vz

w

=

CθCψ CθSψ −Sθ

SφSθCψ − CφSψ SφSθSψ + CφCψ SφCθ

CφSθCψ + SφSψ CφSθSψ − SφCψ CφCθ

vx

vy

vz

b

(1)

Equation (2) below defines the coordinate transformation from the body-fixed

reference frame to the wind tunnel reference frame in terms of the angle-of-attack

and sideslip. Angle-of-attack (α) is the angle between the freestream velocity (U∞),

or xw, and the xb-axis. Sideslip (β) is defined as the angle between xb and the

projection of U∞ onto the xw-yw plane. Both of these angles can be seen below in

Figure 3.

11

www.manaraa.com

Figure 3. Model angular orientation defined within the wind tunnel [21]

Replacing the pitch angle, θ, with angle of attack, α, and the yaw angle, ψ, with

the negative sideslip angle, β, in Equation (1) yields Equation (2) below where roll,

φ, is set to zero because roll does not affect the aerodynamics of a model in a wind

tunnel simulating forward flight conditions.

Fx

Fy

Fz

w

=

CαCβ −CαSβ −Sα

Sβ Cβ 0

SαCβ −SαSβ Cα

Fx

Fy

Fz

b

(2)

Equations (1) and (2) above describe the transformation matrices from the body-

fixed reference frame to the wind tunnel reference frame, but all input trajectories are

defined with respect to the MTA-model reference frame. As such, there must also be

transformations from the MTA-model reference frame to the body-fixed frame and

then another between the MTA intertial reference frame to the MTA-model reference

frame. Because the body-fixed reference frame and the model reference frame are

coincident but rotated, the transformation can be simply described by Equation (3)

12

www.manaraa.com

where “b” denotes the body-fixed frame and “m” denotes the MTA-model frame. The

transformation from the inertial frame to the MTA-model frame contains physical

offsets but also requires calculating the kinematics of the MTA arm and will be the

discussion of Section 2.3.

x

y

z

φ

θ

ψ

b

=

0 1 0 0 0 0

−1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 −1 0

0 0 0 −1 0 0

0 0 0 0 0 1

x

y

z

φ

θ

ψ

m

(3)

2.3 Motion Test Apparatus Kinematics

In this section, we develop both the forward and inverse kinematics of the MTA

robotic manipulator, or the geometric relationship between the end effector1, or IUT,

and the angular values robotic joints. The forward or configuration kinematics de-

scribe the Cartesian position of the end effector given the joint angles and lengths of

the MTA links [46]. In this formulation of the problem, there is only one solution for

the position of the end effector given a specific set of joint values. However, when

computing the inverse kinematics, the problem is done in reverse: to calculate the

joint angular values given a desired Cartesian position of the end effector. Solving

this problem is necessary because it is how the MTA operates: commanding joint

angles defined from the desired end effector position. Calculation of the inverse kine-

matics is more complicated than for the forward kinematics as there is more than

one combination of joint values (non-uniqueness) that yields a desired end effector

1In robotics, the appliance or device at the end of the robotic arm is called the end effector.
Herein, the IUT, or sting location, will loosely be referred to as the end effector.

13

www.manaraa.com

position for a 6-DOF manipulator.

Forward Kinematics.

Any robotic manipulator is comprised of a set of links held together by joints.

In the case of the MTA, a simple 1-DOF motor controls each of the six joints: the

torso yaw (θtr), the shoulder pitch (θsp), the elbow pitch (θep), the elbow roll (θer),

the wrist pitch (θwp), and the wrist roll (θwr). For a visual reference, refer to Figure

1.

Because each joint has only one degree of freedom and the links are assumed to

be negligibly stiff, simple homogeneous transformation matrices between joints can

be used to calculate the overall forward kinematics [46]. This method assigns a kine-

matic reference frame to the end of each link, coincident with the joints, and then de-

scribes the geometric relationship between subsequent reference frames through sim-

ple trigonometric and linear operations. There are eight kinematic reference frames

overall specific to the MTA, comprised of the MTA-inertial reference frame, the six

joints, and the MTA-model reference frame. The eight reference frames for the MTA

can be seen in Figure 4.

There is a homogeneous transformation matrix describing the rotation and offset

between each set of successive kinematic reference frames shown in Figure 4. The

top-left 3x3 square of each transformation matrix contains the rotation from reference

frame i to reference frame (i+1) with respect to the angular displacement of the joint

in degrees where i denotes the kinematic reference frame and not the MTA inertial

frame in this case. The fourth column of each transformation matrix corresponds to

the displacement in meters between origins of each set of reference frames. The fourth

row of each transformation matrix is maintained as [0 0 0 1] so that the matrices are

square. For instance, the transformation matrix between the MTA-inertial reference

14

www.manaraa.com

Figure 4. MTA kinematic reference frames. Lengths are in meters, and angular dis-
placements are set to zero. [41]

15

www.manaraa.com

frame, denoted by the subscript 0 in this section, and the torso yaw joint, denoted

by the subscript 1, is shown below in Equation (4). Premultiplying [x, y, z]T0 by the

first 3x3 of 0
1T yields [x, y, z]T1 . The fourth column signifies that the origin of reference

frame 1, the torso yaw joint, lies 1.2764 meters above the origin of the inertial reference

frame in the zi-direction.

0
1T =

cos(θtr − 90◦) −sin(θtr − 90◦) 0 0

sin(θtr − 90◦) −cos(θtr − 90◦) 0 0

0 0 1 −1.2764

0 0 0 1

(4)

The homogeneous transformation matrices describing the relationships between

the rest of the kinematic reference frames of the MTA are shown below in Equations

(5) through (10). It is important to note that the variables in column 4 of 6
7T in

Equation (10) defined as modeli depend on the dimensions of the specific sting and

the test article in use, or the dimensions of the end effector.

1
2T =

cos(θsp) 0 sin(θsp) 0.2413

0 1 0 0.2539

−sin(θsp) 0 cos(θsp) 0

0 0 0 1

(5)

2
3T =

cos(θep) 0 sin(θep) 1.3335

0 1 0 0.2282

−sin(θep) 0 cos(θep) 0

0 0 0 1

(6)

16

www.manaraa.com

3
4T =

1 0 0 0.2889

0 cos(θer) −sin(θer) 0

0 sin(θer) cos(θer) 0

0 0 0 1

(7)

4
5T =

cos(θwp) 0 sin(θwp) 1.0572

0 1 0 0

−sin(θwp) 0 cos(θwp) 0

0 0 0 1

(8)

5
6T =

1 0 0 0.2683

0 cos(θwr) −sin(θwr) 0

0 sin(θwr) cos(θwr) 0

0 0 0 1

(9)

6
7T =

1 0 0 modelx

0 1 0 modely

0 0 1 modelx

0 0 0 1

(10)

All of the previously defined sub-transformation matrices can be multiplied as

shown in Equation (11) to obtain a single, overall coordinate transformation from the

MTA-inertial frame to the MTA-model frame.

0
7T =0

1 T ∗12 T ∗23 T ∗34 T ∗45 T ∗56 T ∗67 T (11)

17

www.manaraa.com

Inverse Kinematics.

Calculating the inverse kinematics for the MTA is more complex as there is no

general algorithm for doing so with systems of higher DOFs and there is no guarantee

for uniqueness. A solution set, or a combination of the six joint angles associated with

a desired position and orientation of the end effector, can be achieved in three ways:

iterative, algebraic, or geometric methods [10]. Iterative solutions approach a single

solution which is highly dependent on the starting position while the algebraic solution

does not always yield a closed-form analytic solution. Geometric solutions, contrarily,

can beget multiple solutions but must have a closed-form solution for the first three

joints to compute a complete inverse kinematic set [46]. The MTA-specific solution

method described here was defined in the RE2, Inc. user’s manual and adapted by

Lancaster for notation purposes [38, 26]. Per this solution method and for reasons of

safety, the “elbow-down” solution is preferred.

An input pose, or a Cartesian state describing both the position and orientation

of the end effector, can be converted to a homogeneous transform via Equation (12).

The variables x, y, z represent the desired model position while the angles ψ (yaw, or

rotation about z0), θ (pitch, or rotation about y0), and φ (roll, or rotation about x0)

represent the input model orientation with respect to the MTA-inertial frame.

0
7T =

cosψ cos θ cosψ sin θ sinφ− sinψ cosφ cosψ sin θ cosφ+ sinψ sinφ x

sinψ cos θ sinψ sin θ sinφ+ cosψ cosφ sinψ sin θ cosφ− cosψ sinφ y

− sin θ cos θ sinφ cos θ cosφ z

0 0 0 1

(12)

The first step in defining the equations for the joint angles is to describe the MTA

wrist pitch reference frame (ref. frame 5) with respect to the wrist roll reference

frame (ref. frame 6). This is done by separating the transformation matrix (56T)

18

www.manaraa.com

into a rotational component (55′R) and a translation component (5
′

6 P) where reference

frame 5′ denotes a fictional, intermediate reference frame coincident with the wrist

pitch (ref. frame 5) with the same orientation as the wrist roll (ref. frame 6). This

separated matrix is shown in Equation (13) below.

5
6T = 5

5′R ∗ 5′

6 P =

1 0 0 0

0 cos(θwr) −sin(θwr) 0

0 sin(θwr) cos(θwr) 0

0 0 0 1

1 0 0 0.2683

0 1 0 0

0 0 1 0

0 0 0 1

(13)

Equation (13) can be substituted into Equation (11) to obtain another represen-

tation of the homogeneous transformation matrix from the inertial reference frame to

the MTA model reference frame, expressed in Equation (14) below. Since both 6
7T and

5′
6 P are translation matrices representing positive offsets fixed for all time, they are full

rank and thus have constant inverses. Multiplying Equation (14) by their inverses in

order results in Equation (15) which represents a homogeneous transformation from

the inertial reference frame to reference frame 5’, or the model’s orientation located

at the wrist pitch reference frame [26].

0
7T =0

1 T ∗12 T ∗23 T ∗34 T ∗45 T ∗ (55′R ∗ 5′

6 P) ∗67 T (14)

0
5T
′ = 0

7T ∗67 T−1 ∗ 5′

6 P
−1 =0

1 T ∗12 T ∗23 T ∗34 T ∗45 T ∗ 5
5′R (15)

The solution method utilized by RE2, Inc. applies Pieper’s solution which states

that a closed-form solution for the inverse kinematics of the 6 DOF manipulator exists

when three consecutive joint axes intersect at one point [53]. For the MTA, the three

consecutive joint angles are the elbow roll, wrist pitch, and wrist roll (ref. frames

4-6). Using Pieper’s solution, solving the inverse kinematics for Equation (15) can

19

www.manaraa.com

be split into two separate problems: computing the first three joint angles (the torso

yaw, shoulder pitch, and elbow pitch) in order to achieve the desired end effector

position and then computing the last three joint angles (elbow roll, wrist pitch, and

wrist roll) to achieve the desired end effector orientation [38].

In order to solve for the lower three joint angles, the geometric offset between

the torso yaw joint and the shoulder pitch joint must first be accounted for. The

actual dimensions of the torso yaw (ref. frame 1), shoulder pitch (ref. frame 2), and

wrist pitch joint (ref. frame 5) are shown in Figure 5 while Figure 6 shows a simple

geometric representation of the same configuration but rotated. In this Figure, the

offset in the x-direction between the shoulder pitch reference frame and the wrist

pitch reference frame is neglected so that their x-axes are collinear. This assumption

does not affect the inverse kinematic calculations because both reference frames are

oriented similarly [26].

Length b in Figure 6 is a combination of the wrist pitch and shoulder pitch angles

and lengths of the corresponding links. Length a is a fixed value of the distance

between the origins of the torso yaw joint and the shoulder pitch joint and is calculated

per Equation (16) below. Equations (17) and (18) below define the x- and y-locations

of the wrist pitch joint with respect to the inertial frame where the value 0.2683

represents the distance in meters between the wrist pitch and wrist roll joints. Length

c, the distance between the torso yaw joint and the wrist pitch joint, is then defined

per Equation (19).

a =

√
(x2 − x1)2 +

[
(y2 − y1) + (y5 − y2)

]2
=
√

0.24132 + (0.2539 + 0.2282)2 = 0.5391 m

(16)

xwp = xm −
(
modelx + [x6 − x5]

)
= xm − (modelx + 0.2683) (17)

ywp = ym −modely (18)

20

www.manaraa.com

Figure 5. Geometrical definitions of angles and lengths between the torso yaw, shoulder
pitch, and wrist pitch joints [41]

Figure 6. Geometrical definitions of angles and lengths between the torso yaw, shoulder
pitch, and wrist pitch joints

21

www.manaraa.com

c =
√
x2wp + y2wp (19)

Angle θab in Figure 6 is then calculated using the known distances between the

joints as labeled in Figure 5.

θab = 180◦ − tan−1
(

0.2539 + 0.2282

0.2413

)
= 116.589◦ (20)

With angle θab defined, the length c can be defined as in Equation (21) using the

law of cosines. The same equation can be rearranged and set to zero as in Equation

(22). Equation (22) can then be solved using the quadratic formula for length b, or

the distance in the x-direction between the shoulder pitch and wrist pitch joints, as

in Equation (23). Because there are two options for the solution to the quadratic

equation, only the positive solution for b is chosen for the MTA, as shown in (23), to

satisfy constraints due to reality.

c2 = a2 + b2 − 2ab cos (θab) (21)

b2 +
(
2a cos (θab)b+ (a2 − c2)

)
= 0 (22)

b =
−
(
2a cos (θab)

)
+
√

4a2 cos (θab)− 4(a2 − c2)
2

(23)

The angles η, λ, ξ in Figure 6 are intermediate angles used to solve for the torso

yaw, shoulder pitch, and elbow pitch joints. The calculations for η, λ, ξ are shown in

Equations (24), (25),and (26) below, respectively.

η = tan−1
(ywp
xwp

)
(24)

λ = cos−1
(a2 + c2 − b2

2ac

)
(25)

22

www.manaraa.com

ξ = η − λ (26)

The x- and y-locations for the shoulder pitch joint with respect to the torso yaw

joint are then calculated per Equations (27) and (28) below, respectively. With the

Cartesian coordinates for the shoulder pitch and the wrist pitch joints previously

defined, the torso yaw angle can be calculated per Equation (29) below as the angle

of side b with respect to the x-axis.

xsp = a cos
(
ξ
)

(27)

ysp = a sin
(
ξ
)

(28)

θtr = − tan−1

(
ywp − ysp
xwp − xsp

)
(29)

In order to calculate the angles for the shoulder pitch and elbow pitch joints, the

MTA is regarded as a 2 DOF system once the torso yaw joint angle is calculated.

For this calculation, the offset in the z-direction between the shoulder pitch reference

frame from the MTA-inertial reference frame is subtracted from the homogeneous

transform of Equation (15) to calculate the angle. This is represented in Equation

(30). The angle of the elbow pitch joint with respect to the MTA-inertial frame

is calculated using the law of cosines as in Equation (31). The length L1 = 1.335

meters is the distance between the shoulder pitch origin to the elbow pitch origin

while L2 = (0.2889 + 1.0572) = 1.3641 meters combines the distances between the

elbow pitch origin to the elbow roll origin and then to the wrist pitch origin [38]. The

inverse cosine in Equation (31) yields both a positive and a negative solution for the

joint angle, corresponding to the elbow-down or the elbow-up solution, respectively.

The MTA source code selects for an elbow-down solution due to safety constraints,

yet both solutions are tracked in the case that the elbow-up solution is optimal for

23

www.manaraa.com

the desired trajectory [38].

zsp = 0
5T
′(z) + 1.2764 meters (30)

θep = cos−1

(
b2 + z2sp + L2

1 + L2
2

2L1L2

)
(31)

The angle for the shoulder pitch joint is then calculated using Equation (32) below

where L1 and L2 are the same as in Equation (31).

θsp = − tan−1
(
−zsp
b

)
− tan−1

(
L2 sin(θep)

L1 + L2 cos(θep)

)
(32)

Having solved for the torso yaw, shoulder pitch, and elbow pitch angles, the po-

sition constraint of the end effector has been satisfied. The next three angles (elbow

roll, wrist pitch, and wrist roll) can now be computed in order to achieve the desired

orientation of the end effector. To do so, we can substitute the angles θtr, θep, andθsp

into the transforms of Equations (4)-(6) to obtain 0
3T , or the transform from the MTA-

inertial frame to the elbow pitch reference frame. Then, 0
3T can be inserted into 0

5T
′

as in Equation (33) below where 3
5T
′ represents the transformation from the elbow

pitch reference frame to the intermediate reference frame with the model’s orientation

located at the wrist pitch origin.

0
5T
′ = 0

3T ∗ 3
5T
′ (33)

Equation (33) can be transformed in order to get the equation for 3
5T
′ in Equation

(34) which is made up solely of the variables θer, θwp, andθwr which correspond to

the joint angles for the elbow roll, wrist pitch, and wrist roll, respectively. Equation

(34) can be rewritten as in Equation (35) to show the format and individual matrix

24

www.manaraa.com

elements for use in defining the remaining joint angles.

3
5T
′ = 0

3T
−1 ∗ 0

5T
′ (34)

3
5T
′ =

t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

t41 t42 t43 t44

(35)

Using the elements of 3
5T
′, the joint angles for wrist pitch, elbow roll, and wrist

roll are defined per Equations (36), (37), and (38) respectively.

θwp = tan−1
(√

t221 + t231
t11

)
(36)

θer = tan−1
(
t21/ sin (θwp)

−t31/ sin (θwp)

)
(37)

θwr = tan−1
(
t12/ sin (θwp)

t13/ sin (θwp)

)
(38)

If θwp = 0°, then θer = 0° and θwr is calculated per Equation (39) below.

θwr = tan−1
(
t23
−t22

)
(39)

Because θwp has two solutions, a positive and a negative one, there are actually four

unique closed-form solutions for the inverse kinematics: (2θerx and 2θwr). As such, the

MTA algorithm checks all solutions to see if any of the angles exceed the range limits.

For the solutions that stay within the limits, the forward kinematics are recalculated,

and the calculated Cartesian position is compared against the desired Cartesian model

position. If the error (Euclidean distance) is greater than the threshold of 1x10−6m,

then the solution is thrown out. The MTA algorithm returns the remaining feasible

25

www.manaraa.com

solutions for the inverse kinematics but selects the one that has the joints closest to

their current position with an elbow-down configuration if possible [38].

All six joint angles can be calculated per the equations defined above for desired

Cartesian coordinates of the end effector. Once both the forward and inverse kinemat-

ics are established, control schemes for suitable input trajectories can be developed

and tested.

2.4 Linear vs. Nonlinear Systems

Extensive literature exists in the realm of analyzing and controlling linear sys-

tems, or systems that obey the superposition principle. That is, a change in the

output of the system is proportional to the change in input. Due to their inherent

predictability, linear systems are relatively simple to understand, solve, and control.

They can be solved analytically, lending to a complete understand of their behavior,

and numerous mathematical techniques such as Laplace transforms and convolution

have been developed in order to modify them.

However, any real system will have counterintuitive or unpredictable nonlinear

aspects to it, and superposition does not apply. The behavior of nonlinear systems

in general is much more complicated and obscure. The AFIT MTA is no exception.

It is clear to see from the kinematic equations of Section 2.3 that the MTA is a

highly nonlinear system. The non-uniqueness also creates a significant nonlinearity.

Additionally, as shall be discussed in Section 2.5, the dynamic equations of motion for

a robotic manipulator of any order turn out to be nonlinear, second-order, ordinary

differential equations due to inertial, centrifugal, Coriolis, friction and gravity forces

acting on the robotic linkages. Although there are highly established procedures using

matrix algebra or frequency domain techniques for calculating control laws for linear

systems in general, the same do not exist for nonlinear systems as a whole. Nonlinear

26

www.manaraa.com

systems also differ from linear systems in that they have the potential for limit cycles

(self-excited oscillations, bifurcations (changes in stability as parameters change), and

chaos (extreme sensitivity to initial conditions) [45]. As such, nonlinear systems, and

specifically nonlinear control, is still a widely researched topic with new techniques

currently being developed.

One common technique to solve differential nonlinear equations is to use lineariza-

tion, or an approximation of the nonlinear system with a linear model [45]. However,

the underlying assumption for linearization to hold is that the operating range has to

be small enough for the error in the model’s output and controller’s accuracy to be

negligible. Once the operating range is exceeded, the performance of the controller,

and thus the system, becomes degraded. Because the MTA only operates within the

small wind tunnel test section, the MTA model can be linearized for simple trajec-

tories, as in Lancaster’s work [26]. However, as velocities increase or the motions

become more complex, the linearized controller may not be able to accurately reduce

error from a prescribed trajectory.

While linear systems only have a single equilibrium point if the system is full

rank, a nonlinear system can have multiple equilibrium points. Thus, there must be

a differentiation made between the local stability of a nonlinear system about one of

its equilibrium points or the global stability of the system as a whole. Oftentimes, this

can be done using Lyapunov Stability Theory which is comprised of both an indirect

and a direct part [40]. While the indirect Lyapunov method uses linearization to

evaluate the local stability of an equilibrium point, the direct method uses “Lyapunov

functions,” a semi-representation of the energy of the system, in order to evaluate

the stabilty of a nonlinear system. They are arbitrary scalar functions but usually

are defined as the sum of kinetic and potential energy of the system. Lyapunov

functions must meet certain conditions, such as positive definiteness, in order to

27

www.manaraa.com

declare a system stable. Additional conditions must be met to determine different

levels of stability, such as global asymptotic stability. In fact, depending on the

type of stability that a researcher wants a system to exhibit, a Lyapunov function

can be chosen to design a control law such that the system becomes stable after

implementing the control law. Santibañez and Kelly present a procedure to obtain

Lyapunov functions for the control of robotic manipulators that will be used here in

to analyze the stability of the control laws used in this research [40].

2.5 Dynamic Model

Although the kinematics of the MTA have already been established, they do not

take into account the forces and moments that actually cause motion of the manip-

ulator. The relationship between such forces acting on the system and the ensuing

motion caused is called the dynamic model, or the equations of motion. As aforemen-

tioned in Section 2.4, the MTA, like any robotic manipulator, has a nonlinear dynamic

model in the form of ordinary differential equations. Similar to the kinematics of the

system, the equations of motion can be derived in many ways. The classical approach

for deriving the dynamic model for robotic manipulators is to use the Euler-Lagrange

equations derived from the principle of virtual work [46]. Using Newton’s second law

will yield equivalent dynamics, but the Euler-Lagrange approach has specific proper-

ties that are advantageous when designing control laws [46]. Among these properties

are the skew-symmetry property, the passivity property, bounds on the inertia matrix,

and the linearity in the parameters property, which will be discussed later in this sec-

tion. Other derivations of the dynamics include computer-aided approaches, such as

the recursive Newton-Euler approach, the Composite-Rigid-Body Algorithm, and the

Articulated-Body Algorithm developed at NASA’s Jet Propulsion Laboratory (JPL)

[16]. Closed-form solutions are not guaranteed with iterative approaches as they are

28

www.manaraa.com

with the Lagrangian approach, but they are more appropriate when implementing

real-time control.

To show the derivation of the Euler-Lagrange equations of motion for a robotic

manipulator, the problem of a two-link planar robotic linkage with two revolute joints,

or planar elbow manipulator will be considered. The dynamics of the full AFIT MTA

could be developed here, but they will be an extension of the same form as a two-link

planar example. Because the 2 DOF dynamics are a simple, similar version of the 6

DOF dynamics, if usefulness of a control law on the two-link example is proven, the

control law will be more likely to work well in the 6 DOF model as opposed to lower-

accuracy control laws. Additionally, many control laws in current literature have been

developed for decomposed models of 6 DOF robotic manipulators as opposed to the

overall dynamics due to the complexity involved with a full model [48].

As shown in Figure 7, the elbow manipulator has two joint angles, or two degrees

of freedom, denoted by qi for i = 1, 2. The mass of link i is denoted by mi, the length

of link i is li, lci is the distance from the joint to the center of mass of link i, and Ii is

the moment of inertia of link i through its center of mass. There are also two control

inputs or joint torques, hereafter referred to as τi, located at the corresponding joints.

The derivation assumes that the input torques act directly on the joints, the links

are modeled as homogeneous rectangular bars where the inertia tensor is aligned

with the principal axes, the centroid of the links is located on center lines through

joints, the axis of rotation does not vary, and qi and q̇i are measured relative to the

individual pivots. Since the derivation is based off the rigid-body assumption, the

natural sources of flexibility and elastic joints inherent in a real manipulator system

are not included. Additionally, acceleration due to gravity is measured along negative

y-axis according to the reference frame in Figure 7 [8].

To begin the derivation of any mechanical system using the Euler-Lagrange ap-

29

www.manaraa.com

Figure 7. 2 DOF model of robotic manipulator with relevant dimensions identified [46]

proach, one must first define the Lagrangian, L, as the difference between the total

kinetic and potential energy of the system:

L(q, q̇) = T (q, q̇)− V (q) (40)

Using the Lagrangian, we can obtain the equations of motion, or the Euler-Lagrange

equation, with Equation (41) below where Qi is the generalized, non-conservative

force with respect to qi, or the torque input at each joint.

d

dt

∂L
∂q̇i
− ∂L
∂qi

= Qi i = 1, ..., n (41)

The total kinetic energy is shown below in Equation (42) where vci is the trans-

lational velocity of each link, and ωi is the angular velocity of each link, and Ii is the

centroidal inertia tensor for each link [8].

T =
∑(

1

2
miv

T
civci +

1

2
ωTi Iiωi

)
(42)

30

www.manaraa.com

To get Equation (42) in terms of qi and q̇i, we can define the translation velocity

with Jci, the 2x2 Jacobian matrix relating the centroid velocities to the joint velocities,

as in Equation (43). Note that q̇ = [q̇1 q̇2]
T .

vci = Jciq̇ (43)

Because the joint variables, q = [q1 q2]
T , are also the generalized coordinates, the

Jacobians are easily defined below in Equations (44) and (45) following the derivation

in [46].

Jc1 =

−lc1 sin q1 0

lc1 cos q1 0

0 0

 (44)

Jc2 =

−l1 sin q1 − lc2 sin (q1 + q2) −lc2 sin (q1 + q2)

l1 cos q1 + lc2 cos (q1 + q2) lc2 cos (q1 + q2)

0 0

 (45)

In short form, the total translational kinetic energy of the two-link system is as follows:

Ttrans =
∑(

1

2
miv

T
civci

)
=

1

2
q̇T{m1v

T
c1Jc1vc1 +m2v

T
c2Jc2vc2}q̇ (46)

To calculate the rotational portion of the kinetic energy, the angular velocities

of the links are calculated as below in Equation (47) where k is the z0-axis of the

reference frame.

ω1 = q̇1k, ω2 = (q̇1 + q̇2)k (47)

Because the angular velocities of both links are aligned with k, Ii in Equation (42)

becomes Izz,i. Then, the term ωTi Iiωi in Equation (42) reduces to the form shown in

31

www.manaraa.com

Equation (48).

Trot =
∑(

1

2
ωTi Iiωi

)
=

1

2
q̇T

I1
1 0

0 0

+ I2

1 1

1 1

 q̇ (48)

Thus, substituting Equations (46) and (48) into Equation (42) yields the form below,

where H is known as the inertia matrix. Some trigonometric identities were used

[46].

T (q, q̇) =
1

2
H11q̇1

2 +H12q̇1q̇2 +
1

2
H22q̇2

2

=
1

2
[q̇1 q̇2]

T

H11 H12

H21 H22

q̇1
q̇2

 (49)

where the coefficients Hij are shown below.

H11 = m1l
2
c1 + I1 +m2(l

2
1 + l2c2 + 2l1lc2 cos q2) + I2

H22 = m2l
2
c2 + I2

H12 = H21 = m2(l
2
c2 + l1lc2 cos q2) + I2

(50)

The total potential energy of both links is as follows where g is the constant of

acceleration due to gravity:

V = V1 + V2 = {m1glc1 sin q1}+ {m2gl1 sin q1 + lc2 sin (q1 + q2)} (51)

We can now form and differentiate the Lagrangian to obtain the different terms

32

www.manaraa.com

in Equation (41). For the first joint where the input is τ1,

∂L
∂q1

= −[m1glc1 cos q1 +m2glc2 cos q1 + q2 + l1 cos q1]

∂L
∂q̇1

= H11q̇1 +H12q̇2

d

dt

∂L
∂q̇1

= H11q̈1 +H12q̈2 +
∂H11

∂q2
q̇1q̇2 +

∂H12

∂q2
q̇22

(52)

After some calculation, it can be shown that the Euler-Lagrange equation takes

on the form below [8].

H(q)q̈ +C(q, q̇)q̇ +G(q) = τ (53)

where H(q) is previously defined in Equation (50) and the rest of the coefficient

matrices are defined below.

C11 = −m2l1lc2 sin (q2)q̇2

C12 = −m2l1lc2 sin (q2)(q̇1 + q̇2)

C21 = m2l1lc2 sin (q2)q̇1

C22 = 0

G1 = −[m1glc1 cos q1 +m2glc2 cos q1 + q2 + l1 cos q1]

G2 = m2glc2 cos q1 + q2 + l1 cos q1 + q2

(54)

The system shown in Equation (53) forms a Multi-Input Multi-Output (MIMO)

set of coupled 2nd-order, nonlinear differential equations. The terms in Equation (53)

represent motion due to gravity (any term with a g), centrifugal effects (q̇2i terms),

and Coriolis effects (q̇2ij where i 6= j terms) [46]. If friction is added to the system,

an additional term F (q̇) can be added to the left hand side of Equation (53) where

the terms in F are the subject of current literature and depend on the accuracy of

33

www.manaraa.com

the model to be obtained [12, 39]. To write the system into state-space form, one can

premultiply every term in Equation (53) by H−1 to obtain equations for q̈i.

As previously mentioned, there are a few useful properties that become clear from

using the Lagrangian formulation of the dynamics of the system. Refer to [46] for

proofs of these properties. One property is thatH(q) is a symmetric, positive-definite

matrix, and the quantity (Ḣ − 2C) forms a skew-symmetric matrix. This property

is important in proving stability via Lyapunov analysis when designing control laws

and guarantees the existence of H−1. Another property of the system in Equation

(53) is called passivity, which means that the total energy of the system has a lower

bound. When a system has all revolute joints, as in the model in Figure (7) and

in the MTA, there are also lower and upper bounds on the inertia matrix. That is,

there are constant bounds of the eigenvalues of the inertia matrix independent of q

that can be found. The fourth property is called the linearity of parameters, which

means that the dynamics can be written as a linear function of a combination of the

parameters, such as masses and lengths as in [45]. That is, the parameters can be

rewritten into the form below where the function Y (q, q̇, q̈) is called the regressor,

and Θ is the parameter vector.

H(q)q̈ +C(q, q̇)q̇ +G(q) = Y (q, q̇, q̈)Θ = τ (55)

Typically, finding the combinations of parameters to linearize the system in the

described way is difficult, but for a two link planar manipulator, the parameters that

comprise the vector Θ can easily be found in literature [46]. The parameters are

shown in Equation (56) where Θ1,Θ2, and Θ are the groupings of the inertia terms

and Θ4, and Θ5 are grouped from the gravitational torques [46]. The set of parameters

shown in Equation (56) is not unique, and the parameters can be grouped in other

ways while still maintaining the form of Equation (55) [23, 45, 47, 51].

34

www.manaraa.com

Θ1 =m1l
2
c1 + I1 + I2 +m2(l

2
1 + l2c2)

Θ2 =m2l1lc2

Θ3 =m2l1lc2

Θ4 =m1lc1 +m2l1

Θ5 =m2l2

(56)

With the parameters described as shown in Equation (56), the regressor matrix

is calculated as follows in Equation (57). The matrix Y (q, q̇, q̈) is assumed to be

completely known since q, q̇, and q̈ are all measurable values.

Y (q, q̇, q̈) =

q̈1 cos(q2)(2q̈1 + q̈2) + sin(q2)(q̇
2
1 − 2q̇1q̇2) q̈2 g cos(q1) g cos(q1 + q2)

0 cos(q2)q̈1 + sin(q2)q̇
2
1 q̈2 0 g cos(q1 + q2)

(57)

Linearizing the dynamics in terms of the parameters in this way has a few advan-

tages. For instance, this approach can be used in system identification as when the

the regressor matrix was experimentally determined at sample configurations for a

PUMA 762 robotic manipulator in order to identify the physical mass, inertia, and

friction properties [51]. Methods for stability analysis including limit cycles exist in

the literature [40, 12].

The analysis for the 2 DOF elbow manipulator can be extended to any n degree

of freedom chain manipulator as long as the kinetic energy is the same form as in

Equation (42) and the potential energy of the system is independent of q. The MTA

satisfies both these conditions, so the general form of the dynamics shown in Equation

(53) applies to the AFIT MTA. Likewise, if the designed control laws are stable for

the 2 DOF elbow manipulator (proven via Lyapunov analysis), then the AFIT MTA

will also be stable for those control laws, in theory, because the same properties apply

35

www.manaraa.com

[28].

2.6 Control Methods

There are numerous hierarchies for categorizing robot control. One source de-

fines the control of robotic manipulator based on the goal: path planning, trajectory

generation, and trajectory tracking [46]. Path planning involves computing the end

effector’s motion while trying to reach a specific position, or goal point, with con-

straints, such as avoiding physical collisions. Trajectory generation is different in

that it takes into consideration the time history of the individual joints and their

velocity and acceleration limits. Trajectory tracking is the problem of minimizing the

error between the prescribed path and the actual path that the robot takes. The sub-

ject of this research is mainly trajectory tracking, which involves the use of feedback,

or closed-loop control.

Robotic control can also be defined by the use of open-loop control or closed-loop

control. An open-loop control system is a system where its output has no bearing on

how the system performs. Contrarily, a closed-loop controlled system is one where

the error between the output and reference input drives system behavior. A nominal

system with closed-loop negative feedback is shown in Figure 8 where disturbances

are also introduced to the plant, or the open-loop system.

Another more specific categorization method is to classify industrial robots based

Figure 8. Basic architecture of a closed-loop system [46]

36

www.manaraa.com

on the type of control system in use. In this categorization, there are four types: lim-

ited sequence robots, point-to-point control robots, continuous path control robots,

or intelligent robots [1]. Limited sequence robots, also referred to as “stop-to-stop”

or “non-servo” robots, are simple in that they rely on mechanical stops and switches

to determine the stopping point for joint motion in place of complex control laws.

Typically, they are controlled via open-loop pneumatic systems. Point-to-point con-

trol robots have the capability to move from one end effector point to another while

storing the path memory. Continuous path control, on the other hand, controls the

path from an initial to an end point, typically in a straight line. They can usually stop

at any point in the path as the individual waypoints are saved in memory. Intelligent

robotic systems can track more sophisticated motion including controlling velocity

and acceleration using sensors as feedback.

Additionally, control problems can be classified as either by the size of the system

being controlled. For instance, joints can be controlled either individually, treating the

coupling as disturbances, or as a multivariate problem. The individual joint-scheme

approach simplifies the control problem by treating each joint as a single-input/single-

output (SISO) while the multivariate control scheme is better suited for design of more

complex systems in need of robust or adaptive control, like the MTA [46]. This would

be the multi-input/multi-output (MIMO) case. While the different categorizations of

types of control used in robotic system could be emphasized, the rest of this section is

divided based upon whether the control derives from the kinematics or the dynamics

of the system.

2.6.1 Kinematic Control

One approach to controlling robotic manipulators where joint limits exist is to use

kinematic control, sometimes referred to as joint space control [28]. This approach

37

www.manaraa.com

is computationally light compared to other dynamic torque-based methods and thus

can be useful for real-time trajectory tracking [7]. It works by creating a mapping

from the robot joint space to the task space of the end effector. The joint space, or

configuration space, of a robotic manipulator is the set of all potential values of the

joint angles, and the task space, or workspace, is the set of all positions that an end

effector can reach [28].

Once a representation for the position and orientation of the end effector in terms

of the joint angles is known, one can calculate the inverse kinematics and dispense

the appropriate amount of torque to get the joint motors to the calculated angles.

However, the method of formulating the forward kinematics can also impact the in-

verse kinematic solution process. For complex geometries, such as a 6 DOF robot

arm, the forward kinematics can be computed in many different ways. The method

described in the RE2, Inc. Manual, or the canonical homogeneous transform method

described above in Section 2.3, uses an arbitrary transformation matrices of three

rotations and one translation in order to calculate the forward kinematics from refer-

ence frame i to reference frame (i+ 1) [38]. However, other methods to describe the

forward kinematics of a robotic chain manipulator exist that are more notationally or

computationally efficient. They include using the Denavit-Hartenberg transformation

or using the product of exponentials method.

The Denavit-Hartenberg (D-H) method was developed by Jacques Denavit and

Richard S. Hartenberg in their 1955 paper on kinematic notation for simple joint

schemes [13]. This popular method improves upon previous methods by utilizing

only four parameters in order to describe the position (and orientation) of each link

in a robotic chain link manipulator as opposed to using six parameters: the three

Cartesian coordinates and three Euler angles. The Denavit-Hartenberg parameters

are link twist (αi), link length (ai), link offset (di), and joint angle (θi). Considering

38

www.manaraa.com

a link with the reference frames i and (i− 1) attached rigidly to its joints, link twist

is the angle from the zi−1-axis to the zi-axis about the xi−1-axis. Link length is the

offset distance between the zi−1- and zi-axes along the xi−1 axis. The link offset is

the distance from xi−1 to the xi-axis along the zi-axis. The joint angle is defined as

the angle between the xi−1- and xi-axes about the zi-axis.

Although the D-H method is common in many textbooks, it does not work for all

robotic configurations. For the convention to fully describe the forward kinematics

of the manipulator, the xi-axis must be both perpendicular to and intersect the zi−1-

axis. These two conditions must be met in order to guarantee the existence and

uniqueness of a homogeneous transform matrix from frame (i−1) to the frame i [46].

Due to the geometry of the torso yaw, shoulder pitch, and elbow pitch joints and the

use of the predefined reference frames, these conditions were not met for the MTA. A

simple translation matrix was multiplied to the D-H transformation matrices between

the appropriate reference frames as a simple solution (see Appendix A). Considering

this, the pseudo-Denavit-Hartenberg parameters for each joint of the AFIT MTA are

shown in Table 1 for the joint reference frames designated in Figure 2. However, the

D-H parameters could be used to create alternate intermediate reference frames for

the MTA joints that would satisfy the aforementioned conditions.

Table 1. Denavit-Hartenberg parameters for the AFIT MTA

Joint (i) Description di [m] θi [deg] ai [m] αi [deg]

1 torso yaw 0 θtr−90° 0 0
2 shoulder pitch2 0 θsp 0.2413 0
3 elbow pitch3 0 θep 1.3335 0
4 elbow roll 0 θer 0.2889 0
5 wrist pitch 0 θwp 1.0572 0
6 wrist roll 0 θwr 0.2683 0

2D-H does not account for offsets for adjacent joints in which xi does not intersect zi−1, such as
the 0.2539 m offset between the torso yaw and shoulder pitch joints [46].

39

www.manaraa.com

Using the D-H parameters, one can use the transformation matrix shown below

in Equation (58), which shows the modified Denavit-Hartenberg convention for a

revolute joint. There is also a classical version, but the difference is the order of

operations. That is, the classical method assumes a rotation and translation about

the zi−1-axis and then a rotation and translation about xi while the modified version

describes a rotation and translation about the xi−1-axis and then a rotation and

translation about zi [36]. Both methods will achieve the same kinematics provided

that the parameters are chosen correctly. Additionally, both methods will describe

the orientation and position of the end effector as a product of all the individual

joint-to-joint transformation matrices.

i−1
i T =

cos(θi) − sin(θi) 0 ai

sin(θi) cos(αi) cos(θi) cos(αi) − sin(αi) − sin(αi)di

sin(θi) sin(αi) cos(θi) sin(αi) cos(αi) cos(αi)di

0 0 0 1

(58)

Another way to calculate the kinematics of a robotic manipulator is to use a

method called the product of exponentials, first developed by Brockett in 1984 [28].

An alternative to the Denavit-Hartenberg method, product of exponentials relies on

using the twist coordinates of each joint to characterize the forward kinematics for

a manipulator consisting of revolute, prismatic, or helical joints. That is, each joint

is regarded as a screw motion, or a simple rotation and translation, from fixed axes.

This simplifies the forward kinematics because only two reference frames are used:

the base frame and the tool frame, or, in the case of the MTA, the inertial frame

and the model frame. Because of this, there is no need to assign individual reference

frames to each link, making the derivation more intuitive as well as increasing the

3The same applies to the 0.2282 m offset between the shoulder pitch and elbow pitch joints.

40

www.manaraa.com

speed of computer processing. Using the product of exponentials formulation has the

added benefit that the inverse kinematics can be solved with a canonical, geometric

algorithm, known as the Paden-Kahen subproblems as described in [28].

Additionally, using the product of exponentials to derive the forward kinematics

leads to a natural, simple method of obtaining the manipulator Jacobian, or the re-

lation between the joint angular velocities and the linear and rotational velocities of

the end effector [28]. Traditionally, the Jacobian is obtained by differentiating the

forward kinematics with respect to time, but this calculation can be complex. Calcu-

lating the Jacobian can give insight to the structure, capabilities, and singularities of

the robotic manipulator as well as possibly providing another mechanism to calculate

the inverse kinematics.

Many kinematic control algorithms exist for computing the inverse kinematics of

the robot in real-time, including using the pseudo-inverse of the Jacobian to obtain

the angular rates [52]. The method of using a damped least-squares inverse of the

Jacobian has also been studied [29, 50]. These methods work via numerical inte-

gration and so are prone to numerical drift and other errors specific to numerical

techniques. To overcome this, some researchers have included feedback correction,

denoted as closed-loop inverse kinematics (CLIK) algorithms. Such algorithms also

include Jacobian inverses, transposes, or damped least-squares inverses even up to

second-order kinematics [7].

Kinematic control is often used as a path-planning tool to calculate the trajectory

online, using optimization methods to minimize the path deviation [10] or to satisfy

other constraints such as torque limits [51]. Optimization solutions range from using

neural networks as in [22] to genetic algorithms as in [30] and simulated annealing

[18]. With some of these approaches, joint trajectories based on the planning of

the Cartesian model trajectory can result in overreaching joint rate and acceleration

41

www.manaraa.com

limits [51]. [7] circumvents this problem by introducing a time warp when joint limits

are encountered to slow down the task-space trajectory.

With the MTA, the main problem is not to calculate the trajectory online, but to

gain robustness with respect to all the uncertainties in pose when tracking a predefined

trajectory. See Lancaster’s work for trajectory design; the code includes functions

to check geometric constraints that some of the above-mentioned kinematic control

schemes meet [26].

2.6.2 Dynamic Model-Based Control

The main scope of this research is not to plan optimal paths or trajectories for

the MTA, but to reduce tracking error of the end effector even when subjected to

disturbances from the aerodynamic forces of the wind tunnel. As such, the control

laws used on the two-link planar model and subsequently the 6 DOF MTA model will

be closed-loop dynamic model-based controllers as opposed to kinematic controllers.

Dynamic model based control, as a subclass of robotic control in general, is a diverse

and ever-growing field. As such, only a few control law architectures relevant to

robotic manipulators will be presented in this section.

The trajectory tracking problem is posed as follows: compute the joint torques

so that the actual trajectory matches the desired trajectory in the presence of initial

condition error, sensor noise, and modeling errors [28]. In other words, the control law

calculates the torque applied at each joint despite disturbances. Having the dynamic

model, or even just its structure, is advantageous for the design of many control

laws. If given the dynamic model, one can use the inverse dynamics to calculate the

torques directly from the desired trajectory, the forward dynamics to compute joint

accelerations when the torques are the independent variable, and the inertia matrix

to map the accelerations of the joints to the corresponding joint forces [16].

42

www.manaraa.com

Inverse dynamics can also be used in feedforward control laws, which use the model

to predict the system’s behavior to increase the transient performance [16]. Feedfor-

ward loops often work in tandem with other control mechanisms, such as feedback

loops or proportional-derivative (PD) or proportional-integral-derivative (PID) con-

trollers (discussed later) to gain desired system performance quickly while decreasing

error [24, 43]. Howevever, feedforward control does require a predictable model with

predictable disturbances, things that are not guaranteed for a system like the MTA.

Figure 9 shows a notional example of a feedforward control scheme without any

disturbances or uncertainty where G(s) is the transfer function of the plant, H(s) is

the transfer function of the compensator, and F (s) is the feedforward path. Addi-

tionally, r is the reference input while y is the output signal.

2.6.2.1 PID Control

Proportional control is one of the simplest and most common forms of feedback

control. It is a linear feedback control law of the form in Equation (59) below where

ut is the input to the open-loop plant, Kp is a constant proportional gain, and e(t) =

qdes(t)− qm(t) is the error between the desired and measured angle [32]. As is clearly

evident from Equation (59), proportional control is a linear control law. As mentioned

before, this could be useful for small, simple motions of the MTA. In fact, changing the

proportional gains of the MTA inside the feedback loops was the subject of Lancaster’s

Figure 9. Block diagram of SISO Feedforward controlled system [46]

43

www.manaraa.com

work [26].

u(t) = Kpe(t) (59)

Proportional control can also be combined with derivative control and integral

control. Integral control changes the controller output, u(t), at a rate proportional

to the integral of the error, e(t), and derivative control changes the controller output

proportionally to the rate of the error signal. Adding integral control eliminates the

steady-state error to a step input that results from using proportional control alone.

Derivative control estimates the future error based on its current rate of change. As

such, it can be sensitive to sensor noise. Equation (60) below shows the control law

for a proportional-plus-integral-plus-derivative (PID) controllers. The first term on

the right side of the equation is the proportional control term, and the second term is

the integral control term. The third term shows derivative control. Ti is the integral

time, and Td is the derivative time [32]. To apply PID control, a nonlinear system

should be linearized about its equilibrium points [43]. However, linearizing the system

in this way does mean that stability can only be local, provided the gains keep the

linearized system stable [24].

τ (t) = Kpe(t) +
Ki

Ti

∫ t

0

e(τ)dτ +KpTd
d (e(t))

dt
(60)

2.6.2.2 Feedback Linearization

Another common linearization method is called feedback linearization, which

should provide better trajectory control than the PD controller because the control

law effectively cancels out all of the nonlinear terms of the dynamics, leaving only a

linear system behind for which control is highly achievable [45]. Let the control law

44

www.manaraa.com

for an open-chain robotic manipulator be

τ = Hv +Cq̇ +G (61)

where

v = q̈des − 2λ ˙̃q − λ2q̃ (62)

In Equation (62) above, the subscript denoted by “des” is the desired value of

that variable, ˙̃q is defined as the error q̇des − q̇, and q̃ is defined as qdes − q. In this

formulation, the control law can be likened to a PD control system, where −2λ is the

derivative gain and −λ2 is the proportional gain. In general, λ is strictly positive,

because substituting τ into the system dynamics to obtain the closed-loop dynamics

yields the linear second-order equation below.

¨̃q + 2λ ˙̃q + λ2q̃ = 0 (63)

According to the Routh-Hurwitz criteria, the system will be exponentially stable if

λ > 0, and the position error, q̃ will converge to zero [32].

Feedback linearization works in theory, but in practice it cannot be carried out

exactly due to uncertainties in the system and disturbances. Additionally, the con-

trol scheme does not take into account frictional forces and torques, which play an

important role in the joints of a real system. Similarly, implementing feedback lin-

earization requires measurement of the full state, including angular positions and

their derivatives. A robust feedback linearization method with uncertainty can be

found in literature where [46]. Another proposed approach is to use the inverse of the

analytical Jacobian derived from the kinematics to compute a different version of the

variable, ν, in Equation (62) [39]. Feedback linearization can also be combined with

feedforward control to create computed torque control laws, which require real-time

45

www.manaraa.com

estimates of the torque [47]. These estimates can be done with the use of a Kalman

filter in some instances [19].

2.6.2.3 Sliding Mode Control

Sliding mode control is another method of control that can be used when there

is bounded uncertainty in the system parameters. As such, sliding mode control is

more robust than previously described methods. It uses a nonlinear control law that

switches from one mode to the next; that is, the dynamics are pushed towards a

“sliding surface”, or once on that virtual surface, the dynamics approach zero. For a

second-order system, this surface is defined as

s = ˙̃q + Λq̃ (64)

where Λ is a symmetric positive-definite matrix [45]. For a MIMO system, the sliding

surface, s in Equation (64) becomes a vector, and s can be rewritten as

s = q̇ − q̇r (65)

where q̇r is the reference velocity and can be defined as

q̇r = q̇des − Λq̃ (66)

In order for the system to remain on the surface, si must satisfy the sliding condition

below, which makes the surface an invariant set, as defined by Lasalle’s Invariance

Principle [45].

1

2

d

dt
s2i ≤ −η|si| (67)

46

www.manaraa.com

The sliding mode control law can then be defined as

τ = τ̂ − ksgn(s) (68)

where τ̂ = Ĥq̈r + Ĉq̇r + Ĝ is the exactly known upper limit on the input torque

given the upper bounds, Ĥ , Ĉ, and Ĝ, on the matrices, H ,C, and G, respectively.

With Ĥ = Ĥ −H , and so on, ki is chosen in the vector k to be as follows in order

to satisfy the sliding condition in Equation (67).

ki ≤ |[H̃q̈r + C̃q̇r + G̃]i|+ ηi (69)

While sliding mode control is more robust against system uncertainties, it usually

introduces a lot of chatter due to the discontinuity of the signum (sgn) term in the

control law of Equation (4.1.4) [15]. Chattering can be detrimental to the controller

and physical parameters of the system. To combat this, a constant variable to the

boundary layer thickness, φ, is used so that the control law can be rewritten as

τ = τ̂ − ksat(si/φi) (70)

where sat(si/φi) takes on the value of the sign of s if s > φ or is s/φ otherwise [15].

Furthermore, the boundary layer can be computed as a pseudo-state variable where

its derivative is defined as

φ̇ = −λφ+ k(qdes) (71)

Then, the control law becomes

τ = τ̂ − k̄sat(si/φi) (72)

47

www.manaraa.com

where

k̄i = ki − φ̇i (73)

Adding the time-varying boundary layer has the effect of smoothing out the sliding

surface as well as lessening the control needed. Treating the boundary layer thickness

as a state variable makes the boundary layer thickness proportional to the error [45].

The control laws presented for sliding mode above are only one representation

of an implementation. It does not take into account gravitational or friction terms.

Additionally, because there are bounds on the unknown matrices of the system dy-

namics, the closed-loop system may not be robust against large uncertainties, but

they are of interest for use on the MTA.

2.6.2.4 Model Reference Adaptive Control

Model reference adaptive control (MRAC) is a control method that needs no a

priori information about the model parameters by assuming a known model for the

plant and picking the parameters that make the model perform as intended. Then an

adaptive law changes the estimated parameters in order to regulate the error between

a reference input and the plant output. The basic architecture of an MRAC scheme

is shown in Figure 10 where the adjustment mechanism box contains the adaptive

control law.

In order to use MRAC, the system dynamics must be able to be put into a form

that is linear with respect to the system parameters. As discussed, the linearity of

parameters property can be extended to any rigid body open-chain link manipulator

under the same assumptions. The dynamics represented linearly with respect to

combinations of the parameters was already shown for the elbow manipulator in

Section 2.5.

48

www.manaraa.com

Figure 10. Block diagram of MRAC system [33]

A representative example of MRAC has the form of the control law below

τ = Y â−KDs = Ĥq̈r + Ĉq̇r −KDs (74)

where the adaptive law is

˙̂a = −ΓY T s (75)

where Γ is a user-defined symmetric positive definite matrix, a property that will be

necessary in determining stability. Stability analysis of the specific control laws used

in this research will be discussed further in Chapter III.

However, for many large-scale systems, MRAC schemes can pose convergence

problems and be inefficient [6]. To simplify the MRAC method for robotic control,

many researchers decompose the overall robotic system into smaller subsystems with

coupling terms. Then, the adaptive law applies to each subsystem with their own

respective models. This can be done in many ways, using two subsystems of 3 DOF

models to simulate a full 6 DOF robot [48] or using linearized model of each degree of

freedom [6]. The subsystems could also be modeled with respect to the control input

to take into account the interacting forces and torques [33].

49

www.manaraa.com

Although MRAC schemes are more robust to uncertainties in the system parame-

ters than regular PID or sliding mode controllers generally, they are only appropriate

when the structure of the dynamic system is known and when the parameters are

varying with respect to time more slowly than the dynamics of the system can re-

spond [33]. Therefore, MRAC schemes can be used to validate a dynamic model of

the MTA, or in system identification of the parameters [51].

2.6.2.5 Model Predictive Control

If the system parameters are changing more quickly than the system or model

dynamics, then an MRAC method may not be the most suitable control scheme. As

an example, one could institute Model Predictive Control (MPC) which continually

solves an open-loop optimal control (OLOC) problem [14]. As such, MPC is similar

to feedback control but instead of measuring the error between reference input and

output, it measures the error between the actual states and the previously-assumed

optimal states through repeating the OLOC problem. There are many versions of

MPC: with or without constraints, with varying durations of the prediction horizon,

and with different ways to solve the optimization problems. However, the general

MPC algorithm is shown in Figure 11.

Model predictive control is most useful for linear systems, but has been imple-

mented on many nonlinear mobile robotic systems such as for autonomous underwa-

ter vehicles (AUVs) [44]. Most of the current literature of robotic systems with model

predictive control laws are for mobile robots following a trajectory as opposed to a

chain manipulator manipulating an object. However, MPC can be used in control

of a chain manipulator after the dynamics are initially linearized using feedback lin-

earization or a Taylor series approximation [11]. Additionally, as with MRAC, MPC

can be computationally expensive for large-scale systems. Therefore, many control

50

www.manaraa.com

Figure 11. Block diagram of MP system [14]

51

www.manaraa.com

schemes using MPC are decentralized [14].

2.6.2.6 Other Control Methods

One common way to combat the large computational costs is to combine different

control schemes into one closed-loop system. For instance, one control scheme for

a three-axis Selective Compliance Assembly Robot Arm (SCARA) manipulator uses

adaptive fuzzy sliding mode control to control and stabilize the system [25]. The fuzzy

part of the control law uses fuzzy, user-defined logic in order to alleviate the chattering

from the sliding mode while the adaptive rule switches the input gains online. Another

example of a combined control mechanism uses an inverse dynamic fuzzy sliding

mode controller to account for the uncertainties in the nonlinear parameters of a

robotic manipulator [35]. The law gives an improvement in performance as opposed to

classical inverse dynamics by using the adaptive fuzzy rules to estimate uncertainties

in the unknown parameters.

Many factors that go into choosing a control law, such as the models and parame-

ters available, the processing speed of the equipment, and more. The specific control

laws used to simulate the two-link elbow manipulator and recommended for use on

the 6 DOF MTA model are discussed in Section 3.4 in Chapter III.

2.7 Experimental Methods

As mentioned in Chapter I, wind tunnel testing still plays a vital role in aerospace

research today. Theoretically, it can be used to gain performance data or diagnostic

data by integrating measured pressure over the appropriate surface area of the model,

or it can be used to visualize flow fields [17]. Additionally, wind tunnel testing can

be used to directly measure forces and moments acting on a model when using a

force balance [17]. Sophisticated force balances usually use electronic strain gauges

52

www.manaraa.com

in order to calculate the force acting on the object. As such, the balance must be

calibrated before and after testing in order to ensure that the correct forces are being

measured. Calibration becomes complicated for dynamic tests, as nonlinear effects

due to unsteady aerodynamics compound and may not be measurable if the test

rig does not accurately track the desired trajectory. Additionally, the data must be

normalized for Reynolds number and Mach number effects for wider applicability.

For dynamic wind tunnel testing, it is also important to select a test rig that

does not interfere with the measurements or flow field. Most test rigs are single-DOF

mechanisms, providing one change in orientation of the model during testing. How-

ever, as advances in aerospace research continue to progress, the number of degrees

of freedom as well as the number of designs of test rigs is increasing. For instance,

some test rigs in current literature are using gimbals sometimes coupled with a com-

pensator acting as a weathervane to simulate free-flight in a wind tunnel [20, 34]. For

the MTA, which is an example of a forced-motion rig, the control acts on the robotic

manipulator rather than the model itself which creates a challenged in allocating the

appropriate control signals.

2.7.1 Experimental Measurements

As mentioned, wind tunnel testing is used to obtain force, moment, and pressure

data as well as flow visualization data [17]. Measurements must be time-accurate

in order to synchronize the sensor outputs with the motion of the model especially

for dynamic tests. Therefore, the MTA must have rapid processing, and the sensors

themselves must be able to sample data at a high enough rate to capture the phe-

nomena of interest. Previous testing with the AFIT MTA has used an ATI Nano25

force/torque transducer to directly measure forces and moments as well as a LORD

MicroStrain 3DM Inertial Measurement Unit (IMU) to measure the orientation over

53

www.manaraa.com

time of the model [26, 41, 9]. More information on these specific sensors can be found

in Sections 3.6.2.

The forces and moments measured by the Nano25 or any 6 DOF force balance are

normal force, side force, axial force, yaw moment, pitch moment, and roll moment.

Equation (76) shows the normal force coefficient where F is the force in pounds

measured by the Nano25. Equation (77) shows the side force coefficient. Equation

(78) shows the axial force coefficient.

CN =
Fx

1
2
ρV 2
∞(π

4
D2)

(76)

CY =
Fy

1
2
ρV 2
∞(π

4
D2)

(77)

CX =
Fz

1
2
ρV 2
∞(π

4
D2)

(78)

Equation (79) shows the yaw moment coefficient where T is the torque in foot-

pounds measured by the Nano25. Equation (80) shows the pitch moment coefficient.

Equation (81) shows the roll moment coefficient.

Cn =
Tx

1
2
ρV 2
∞(π

4
D2)D

(79)

Cm =
Ty

1
2
ρV 2
∞(π

4
D2)D

(80)

Cl =
Tz

1
2
ρV 2
∞(π

4
D2)D

(81)

Aerodynamic coefficients are important as a standard for which to compare wind

tunnel data across different platforms and laboratories. There are numerous coeffi-

cients that can be calculated from dynamic testing; however, this research focuses on

quantifying the error due to different control mechanisms. As such, only a few major

54

www.manaraa.com

aerodynamic coefficients pertinent to dynamic store separation will be discussed in

this section including pressure coefficient and the force- and moment-coefficients for

the six spatial degrees-of-freedom.

In order to calculate such aerodynamic coefficients, certain dimensional references,

or measurements specific to the wind tunnel and model in use, must be ascertained.

These dimensional references include cross-sectional area of the wind tunnel, weight

of the model, lengths, etc. See Section 3.6 and Appendix B for specific information

about the test fixtures and model used in this research.

Pressure measurements are especially important for experiments involving store

separation because the bay creates a low dynamic pressure region inside the bay

while high dynamic pressure flows past the bay [9]. Equation (82) shows the pressure

coefficient.

Cp =
P − P∞
1
2
ρV 2
∞

(82)

These measurements and calculations will be necessary to experimentally validate

the closed-loop dynamic model of the MTA.

2.8 Chapter II Summary

Chapter II covered data and theory pertinent to designing the control system

of the AFIT MTA. Relevant reference frames and coordinate transformations were

defined, and the forward and inverse kinematics were shown. Additionally, the chapter

covered important details about the differences between linear and nonlinear systems.

The dynamic model of a two-link elbow manipulator and its relevance to the MTA

were also presented. An overview of potential control methods for the MTA based

on robotic manipulation and current topical literature was also covered along with a

brief review of experimental data and methods relevant to wind tunnel testing. The

next chapter describes the specific methodology used in this research.

55

www.manaraa.com

III. AFIT MTA System Description

3.1 Motion Test Apparatus Design

3.1.1 MTA Arm Manipulator

The Motion Test Apparatus was initially designed to act as a 6-DOF robotic

manipulator for use in an open-section wind tunnel forced-motion rig testing. It is

primarily made of aluminum and steel, weighing approximately 1500 lbs and with a

steel base with dimensions 46x60x33 inches [9]. Due to the MTA’s limited operating

space at AFIT and large capability, there is a safety fence surrounding it. The fence

must be closed in order for the MTA to operate, and there are emergency shutdown

switches on the fence as well as next to the MTA controller computer as in Figure

12. Additional safety measures include mechanical stops to limit the over-rotation of

the joints as well as angle and rate limits built into the software to prevent wear of

the hardware and contact with the safety fence.

Primarily, the MTA operates by moving a test article along a prescribed trajectory

described by user input waypoints using a synchronized combination of the six joint

motors. Each motor is also integrated with a digital encoder to keep track of angular

orientation of the joint. The motors and their respective controllers are detailed in

Table 2. The ELMO® controllers receive velocity commands from the MTA computer

which uses a cubic spline to calculate the velocities from the Cartesian waypoints

(refer to Section 3.4 for more information) [38]. The MTA software has been updated

by Neya Systems, LLC, since the work of Lancaster [26] to include angular feedback

control from the motor encoders using position-time scripts. Work by Sellers [41] and

Bower [9] reflect the use of the newer software but only for the wrist pitch and wrist

roll motors. Further information about the MTA components can be found in the

user’s manual [38] or detailed in Lancaster’s thesis [26].

56

www.manaraa.com

Figure 12. Emergency button on MTA safety fence

Table 2. MTA joint hardware components [41]

Joint Motor Controller Gearbox

Manufacturer: Kollmorgen1 Elmo Onvio2

Torso Yaw AKM65N Drum HV (G-DRU-A35) DM10090
Shoulder Pitch AKM65N Drum HV (G-DRU-A35) DM08055
Elbow Pitch AKM52K Trombone (G-TRO6.1) DN05078
Elbow Roll AKM22E Trombone (G-TRO6.1) DN03055
Wrist Pitch AKM22E Trombone (G-TRO6.1) DN03055
Wrist Roll AKM22E Trombone (G-TRO6.1) DN02015

3.1.2 MTA Control System

The MTA system also includes a Linux-powered controller computer, hereafter

referred to as the MTA computer [9]. The MTA computer stands adjacent to the wind

tunnel as shown in Figure (13) and is directly connected to the MTA manipulator and

performs all the necessary calculations to transcribe coordinates into motor motion.

Specifically, since the software update from Neya Systems, LLC, the angular velocity

commands, calculated with input from the motor encoders, are sent to the MTA joint

controllers. The encoders, in turn, output angular orientation data that is used to

1EnDat Absolute Encoder with each BLDC motor
2Zero Backlash

57

www.manaraa.com

Figure 13. MTA computer in subsonic wind tunnel laboratory at AFIT

calculate the next set of angular velocity commands. There are no velocity sensor on

the joints. The degree to which the MTA actually follows the prescribed trajectory

then depends on many factors including calculation speed, the speed and degree at

which the forces and moments on the IUT change, and the accuracy of the angular

position encoders. The control laws in use will be discussed more in Section 3.4.

Previously, trajectory command files were input to the MTA by uploading them

as .txt files to a Linux-powered laptop. Since Fall of 2018, the MTA computer can be

accessed via an ethernet cable connected to a desktop in the AFIT Low-Speed Wind-

Tunnel Laboratory. The desktop uses PuTTY, an open-source terminal emulator, to

access the Linux server of the MTA via a secure shell (SSH) connection. The .txt

trajectory files can be uploaded to the Linux server through PuTTY. The format

of the trajectory files depends on the control systems in use, either from the Neya

Systems, LLC, software update or from the adaptive control laws developed from this

work. Refer to Section 3.3 for further details on the formatting and content of such

trajectory files.

58

www.manaraa.com

3.2 MTA Operation

The procedures for operation of the MTA outlined in this section are detailed in

the RE2, Inc. User’s Manual for the MTA [38]. Further description of the operating

procedures can also be found in the theses of Lancaster, Sellers, and Bower [26, 41, 9].

To begin operation, the MTA computer must be connected to the host-computer

via an ethernet cable. To power it on, a key is used to unlock the controls on the MTA

computer. Then, the power switch can be turned to the “on” position, indicated by

a green light, which routes power through the MTA computer to the MTA. After a

short time, the operator can log onto the host-computer and connect to the MTA

computer through PuTTY. To do so, one must enter the commands outlined in the

left hand column of Table 3.

Table 3. Linux login commands

Command Description

ssh root@10.10.10.10 Executes SSH protocol for MTA computer to login

ls Lists all files in current directory

cd re2mtav3 Changes current directory to version 3 of MTA source code

The MTA computer has the static IP address of 10.10.10.10, so the first command

of Table 3 should not change. The third command in row 3 of Table 3 changes the linux

directory to whatever is listed after cd. The table lists only one possible directory;

however, past directories that may not be compatible with the input trajectory files

may still be listed. Once the correct directory is selected, the researcher can use the

command ls to view all the files and functions in that directory. This is where all the

kinematics and control laws are stored as functions, along with the desired trajectory

files (refer to Section 3.3).

The directory also includes four basic commands that are used in any version

59

www.manaraa.com

of the code which execute the motion of the MTA, as listed in Table 4. The first

command of Table 4 brings the MTA to the first position listed in the trajectory

file specified. The Linux input would be typed as “./mtaHome trajFile.txt,”

where trajFile.txt is the desired trajectory file. The second command, mta

would then execute the whole trajectory file, starting from the first position listed,

typed as “./mta trajFile.txt.”

Table 4. MTA motion commands

Command Description

mtaHome Moves MTA to first point of specified trajectory file

mta Executes specified trajectory

mtaAngles Gives joint angles at current position of MTA

mtaMoveTo Moves joints to specified angular positions

Since the software update by Neya Systems, LLC, the version of the directory used

in Bower’s work, re2mta rollpitch, is slightly different [9]. In the directory, there

are two forms that desired trajectory files can take: home trajectory and dynamic tra-

jectory. A home trajectory file brings the MTA to the starting position of a particular

dynamic test by specifying the position and orientation of the IUT at each time step.

A dynamic trajectory file is then executed after the home trajectory file to run partic-

ular tests. All trajectory files have a fixed time interval of 0.008 seconds between way

points per manufacturer design [38]. As an example, the homing file would be labeled

“startPos.txt” and the trajectory file would be named “movePos.txt.” The

corresponding commands would then be input as “./mtaHome startPos.txt,”

which homes the MTA to the starting position of the predefined trajectory file, and

“./mta startPos.txt movePos.txt,” which executes the trajectory file. The

two types of trajectory files which are described in more detail in Section 3.3 below.

The last two commands in Table 4 are used as safety checks and for programming

60

www.manaraa.com

trajectory files. For instance, the command mtaMoveTo moves the MTA from its

current position to a specified set of angular positions. One example is to move from

a starting position of a trajectory file to its final position. Executing a single motion

such as this allows the researcher to become aware of any motion that is outside

the MTA’s reachable space or could possibly cause damage to the equipment, such

as exceeding velocity limits of the motors. In essence, the researcher is testing any

potentially-damaging movements that the MTA might incur so that the trajectory

file can be redesigned to avoid such damage.

Likewise, the command mtaAngles outputs the angular positions in degrees and

radians for the current position of the MTA. This information can be used to design

new trajectory files by allowing the operator to manually move the MTA to and from

desired positions and just reading the joint angles from the command.

During execution of a trajectory file, the MTA records angular position at each

time step. The velocity at each time step is then computed by the MTA by dividing

the difference in position between two points in space by the corresponding time

interval. The position and velocity data can then be saved and copied to the host-

computer after the MTA concludes its motion, at which time the joint motors are

disengaged and the joint brakes are engaged.

To save data after a test run, input the following commands: “cd Desktop”, and

“scp root@10.10.10.10:/root/re2mta rollpitch/*.csv.” Again, the pass-

word is mtare2. After executing the above commands, the files MtaCartPos.csv and

MtaRawAngles.csv will appear on the desktop and should be saved or renamed before

executing another test run.

At all times during operation of the MTA, the red emergency stop button should

be located next to the Linux host-computer. Pressing any of the emergency stops

during operation of the MTA will disable its motion. Likewise, typing Cntrl-C will

61

www.manaraa.com

also exit the program.

To shutdown the system normally, type shutdown now before turning the switch

on the MTA computer to the OFF position. Refer to the RE2, Inc. User’s Manual

for further information [38].

3.3 Desired Trajectory Files

3.3.1 Format

A home trajectory file has seven columns in order to manipulate all of the joints

into the correct orientation. Column 1 indicates time in seconds with the 0.008 time

interval. Columns 2-5 indicate the body-fixed Cartesian coordinates of the model,

xb, yb, and zb, with respect to the MTA-inertial reference frame origin expressed in

meters. Columns 5-7 indicate the roll, pitch, and yaw orientation of the model with

respect to the MTA-inertial reference frame expressed in radians. A sample home

trajectory file can be shown below in Table 5 where the column headers are only

shown for reader reference.

Table 5. Sample Home Trajectory File [38]

Time X Y Z Phi Theta Psi

0.0000 -0.0640 -2.5120 -1.7930 0.0000 0.0000 -1.6718
0.0080 -0.0640 -2.5110 -1.7930 0.0000 0.0000 -1.6718
0.0160 -0.0640 -2.5100 -1.7930 0.0000 0.0000 -1.6718

...
...

...
...

...
...

0.0640 -0.0643 -2.5030 -1.7930 0.0000 0.0000 -1.6718
0.0720 -0.0644 -2.5029 -1.7930 0.0000 0.0000 -1.6718
0.0800 -0.0645 -2.5019 -1.7930 0.0000 0.0000 -1.6718

A dynamic trajectory file has only three columns indicating (1) time, (2) the pitch

of the wrist joint in radians (WP), and (3) roll of the wrist joint in radians (WR).

This kind of trajectory file contains coordinates for only wrist pitch and wrist roll

62

www.manaraa.com

because the software update by Neya Systems, LLC, only included feedback control

from the two joints. Only two DOFs were included due to contract support hours for

development and also to keep the system simple when the software was first being

updated. A sample of the dynamic trajectory file using only the 2 DOF control system

is shown below in Table 6.

Table 6. Sample Dynamic Trajectory File [9]

Time WP WR

0.0000 -0.28200 0.06300
0.0080 -0.27973 0.06300
0.0160 -0.27746 0.06300

...
...

...
0.09844 -0.00254 0.06300
0.99200 -0.00027 0.06300
1.0000 0.00002 0.06300

Although the trajectory files contain only position values, the velocity commanded

is not explicitly stated in the files. Rather, it is specified by the difference in angular

position between time steps.

Because the focus of this research is to create a control system with less tracking

error for all six degrees of freedom of the system, the dynamic trajectory file for exper-

iments testing the new control system will have seven columns as well, including the

desired angles for all of the joints, not solely for the wrist pitch and wrist roll motors.

The three-column dynamic trajectory files will be used as a basis of comparison for

the experiments of this report.

3.3.2 Design

Similar to the path-planning problem, designing a new trajectory file for the MTA

to track is not a simple task due to physical constraints of the MTA joint motion

63

www.manaraa.com

and limited operating space. The original trajectory files for pitch-plunge and pitch

oscillation motions were created by Patrick Rowe of RE2, Inc. To simplify the design

and creation of new trajectory files, Lancaster created a simple Matlab® program,

the code for which can be found in Appendix B of his report [26].

Following Lancaster’s program, a user can write a trajectory file with respect to

the wind tunnel reference frame that is easily convertable to the body-fixed reference

frame via software of the user’s choice (refer to Section 2.2). Then, the file, in terms of

the body-fixed reference frame, can be loaded into Lancaster’s Matlab® script named

Trajectory Coordinate Transformation.m to convert the Cartesian coordinates

to the MTA-inertial frame with the appropriate format and time intervals. The

same program has a graphical user interface (GUI) interface that allows the user to

change the coordinates back to the body-fixed reference frame for post-experiment

comparison. The user must define the output file with the extension “.txt.”

The GUI also has a tab entitled “Operating Conditions” which allows the user

to input the location of the MTA-model reference frame’s origin with respect to

the MTA-inertial reference frame as the starting location of the model for a specific

trajectory. The same tab has inputs for the user to specify the maximum allowable

direction in the x-, y-, and z-directions in meters. Because these are user-defined

inputs, they are not necessarily consistent with the hardware or software limits for

the MTA. Therefore, one must take caution when defining the inputs and when testing

the MTA to avoid collision with the wind tunnel walls or window.

The specifics of Lancaster’s program are that it ensures that the trajectory file has

the correct time step of 0.008 seconds, corresponding to a sampling frequency of 125

Hertz, with a cubic spline interpolation before overlaying the interpolated trajectory

with the original trajectory for user verification. After this, the program performs

the coordinate transformation before adding the offsets to the MTA-model reference

64

www.manaraa.com

frame origin. The units of the original trajectory file are also user-defined in the GUI.

The program, as mentioned, does not take into account limits imposed by the MTA

hardware or software [26].

3.4 MTA Control System

The original control system for the MTA has four steps to obtain the output

velocity commands to each motor from the initial given desired trajectory. The first

step is to convert the Cartesian coordinates of the trajectory to joint angles using the

inverse kinematics. Due to Pieper’s solution method and the mechanical configuration

of the arm, the inverse kinematics give a closed-form solution for the joint angles if

the trajectory is achievable (refer to Section 2.3). If the solution cannot be found,

the algorithm reports an error.

The second step of the control algorithm is to calculate the desired angular ve-

locities for each joint at each time step. This simple calculation is performed by first

computing the slope between two waypoints, as shown in Equation (83) below where

the subscripts, A and B, identify two consecutive waypoints.

sAB =
θB − θA
0.008

(83)

Then the slope sBC is calculated between waypoints B and C, which is the next

consecutive waypoint. If both sAB and sBC have the same sign, the velocity of the

middle waypoint, B, is calculated by averaging the slopes. If two consecutive slopes

have opposite signs, then the velocity of B is set to zero according to the algorithm.

Similarly, the first and last velocities are set to zero [38].

Once the position and velocity for each waypoint is calculated, the MTA algorithm

fits a cubic polynomial between each pair of adjacent waypoints to find a smooth curve

65

www.manaraa.com

for position. The cubic polynomial takes the form in Equation (84) where t is the

interval of time between the start and end waypoint, between zero and ∆t.

θ(t) = at3 + bt2 + ct+ d (84)

The coefficients of the cubic polynomial are defined in Equation (85) where the sub-

script i denotes a starting position or velocity, the subscript i+ 1 denotes the end

position or velocity, and ∆t is the time step. These coefficients are computed for each

neighboring pair of waypoints.

a =
−2

∆t3
(θi+1 − θi) +

1

∆t2
(θ̇i+1 + θ̇i)

b =
3

∆t2
(θi+1 − θi)−

2

∆t
θ̇i −

1

∆t
θ̇i+1

c = θ̇i

d = θi

(85)

The fourth and final step of the MTA computer’s original algorithm is to compute

the output velocity. The velocity is computed by the time derivative of Equation (84)

to obtain the quadratic polynomial with the same coefficients, as shown in Equation

(86) where the time, t, is the interval of time between a pair of waypoints. The output

velocity commands can be calculated for any frequency because the parabolic spline

is a smooth function.

θ̇(t) = 3at2 + 2bt+ c (86)

Each ELMO® controller would then receive the set of velocity commands calcu-

lated by the MTA computer and output both the angular position and velocity data

from the digital motor encoders for use in feedback control. The measured velocity

was calculated by dividing the difference between angular position measurements by

the time interval between those measurements. Thus, each joint was controlled as a

66

www.manaraa.com

single-input multi-output system. Figure 14 shows the control block diagram with

position and velocity feedback for each joint system.

As shown in Figure 14, each joint used PD, or proportional-derivative, control with

two tunable gains on the position and velocity: Kp and Kv, respectively. According

to the MTA RE2, Inc. User’s Manual, only the first four joints (torso yaw, shoulder

pitch, elbow pitch, elbow roll) were tuned during development to output the lowest

velocity error while remaining stable [38]. This was due in part to the inability to

test the full velocity ranges of the joints in their test environment, hoping to be able

to test and tune all of the joints once installed in the proper laboratory. This is a

necessary step due to the nonlinearity of the joint motors, but it did not occur at

installation. To remedy this, Lancaster changed the gains for the wrist pitch and

wrist roll joints so that the control law would work well as a linear approximation for

the trajectories he was testing [26].

Because the system uses independent joint-space control without any coupling

between joints, there is no global control system. Due to the local feedback laws,

if there is position or velocity error between the desired and measured values in a

joint, it will likely compound the error of the other joints to create a larger error

in the Cartesian position of the end effector. Furthermore, as the maneuvers and

Figure 14. Block diagram of PD control system for each joint

67

www.manaraa.com

trajectories of the end effector become more complex, the error will compound more

because the joint angles will fall outside the linearly-approximated region of the PD

controllers. Additionally, Lancaster found that there was hysteresis in the system

even during simple maneuvers, such as pitch oscillation using only the wrist roll joint

[26].

The MTA source code with the Neya Systems, LLC update was downloaded from

the MTA computer, but it was not able to be transcribed into Matlab in order to

give a full analysis of the change in control laws. However, it is known that the new

software uses motor encoder position feedback for only the wrist pitch and wrist roll

motor [9]. Thus, there is still no global control law in terms of the MTA’s workspace.

3.5 Simulations

As discussed in Section 2.5, control laws can be tested on the dynamic model of a

lower-degree-of-freedom system and still be applicable to the MTA if the derivation

includes the rigid body assumption. Therefore, designing and testing a variety of

control laws on the elbow-manipulator in simulation first is more efficient than trying

to design for and control the global system first. Realistically, however, the MTA

links are not infinitely stiff, so there will be differences in the model and simulation

results. Thus, the first step was to explore the 2 DOF control methodologies.

3.5.1 2 DOF System

The control laws to be tested on the 2 DOF system in Matlab® are PD with

feedforward control, feedback linearization (computed torque), sliding mode control,

and model reference adaptive control. The parameters needed for the 2 DOF model

are shown in Figure 15.

The mass properties are based off the last two links of the MTA so that q1 simulates

68

www.manaraa.com

Figure 15. 2 DOF model of robotic manipulator with end-effector uncertainties

the elbow pitch degree of freedom and q2 simulates the wrist pitch degree-of-freedom.

More specifically, they were obtained from the CAD model of the MTA developed by

RE2, Inc. and compared to estimated values [5]. The values with the subscript “e”

in Figure 15 are a combination of the properties of the second link combined with

the properties of the end effector. Because the manipulator is in constant motion

when executing a trajectory, the properties denoted by “e” will be time-varying.

Additionally, because the end effector is subject to the aerodynamic forces imposed

by the wind tunnel, there will be more uncertainty for end effector properties than for

the properties of the links. For simulation, they will be modeled as sinusoidal inputs

bounded by the maximum measurements for the pitch-plunge movement in Sellers’s

work [41]. The specific values used are noted in Chapter IV because different control

laws have different assumptions about the availability and uncertainty of the system

parameters. Chapter IV will also discuss the stability of the different control laws via

Lyapunov analysis.

The state vector used in the 2 DOF simulations will be of the form in Equation

(87) where q1 and q2 are the joint angles, θep and θwp, or the generalized coordinates.

The positional derivative states are the angular rates of the joints: q̇1 and q̇2. The

69

www.manaraa.com

positional states can be converted from Cartesian coordinates via inverse kinematics,

but for simplicity and to be able to use the control laws are kept as angles at first.

The initial conditions for the simulation are the same as the desired trajectory’s

starting position to mimic the MTA’s operational procedures, unless otherwise stated

in Chapter IV. The initial velocities are set to zero.

x = [q1 q̇1 q2 q̇2]
T (87)

Once the 2 DOF control system is complete and the model is verified, the same

control laws can be extended to the 6 DOF case.

3.5.2 6 DOF System

A Matlab® program was modified to create a simulation of the AFIT MTA on

which to test control laws after the 2 DOF system was simulated and verified. The

existing code, from MathWorks® File Exchange, was written by Don Riley, a Profes-

sor at Walla Wall University, simulates the 6 DOF Programmable Universal Machine

for Assembly (PUMA) 762 robot [37]. More specifically, the code animates a 3 dimen-

sional CAD model of the PUMA 762 robot with the forward kinematics calculated

from the Denavit-Hartenberg parameters. The animation is depicted in a GUI win-

dow with slider controls for the user to input the joint angles, as shown in Figure

16. It also has a “Demo” button that moves the robot randomly via the inverse

kinematics, but the function was not animated.

The original PUMA demo code was updated for the MTA graphics and kinematics.

Additionally, the model was updated to follow the original control algorithm of the

AFIT MTA as described in Section 3.4 to act as a model. During the research

herein a number of improvements were identified that could and should be made to

the model before using it to simulate control laws. For instance, the model should

70

www.manaraa.com

Figure 16. Original Matlab® 3D robotic model of PUMA 762 [37]

include friction, gravity, joint angles, angular velocity limits (software- and hardware-

induced), uncertainties, and most importantly the dynamics. Some of these were

partly developed, as will be discussed in Chapter IV.

3.6 Experimental Setup

After designing the control laws for the 2 DOF and 6 DOF and running them in

simulations, it is important to test them on the actual MTA for model validation as

well as verification of the control schemes’ usefulness in decreasing error and ensuring

robustness.

3.6.1 Wind Tunnel Models and Model Support Sting

The model support sting was designed by Lancaster to attach to the MTA wrist

and support the experimental model in the wind tunnel. It was designed so that the

quarter-chord, or aerodynamic center, of the model it holds would be in line with the

71

www.manaraa.com

Figure 17. AFIT MTA model support sting [41]

wrist roll axis of rotation. Therefore, the pitch oscillation motion could be performed

using only the wrist roll degree-of-freedom. The sting is comprised of a base plate

that bolts into the MTA wrist that is welded to a 1-inch diameter piece of stock

aluminum with three bends in it, as shown in Figure 17. The sting extends into the

wind-tunnel test section through the 9-inch diameter circular hole in the plexiglass

and interfaces with the Nano25 sensor as shown in Figure 18. There is an extruded

pin on the model interface end that inserts into the Nano25 to ensure the correct

alignment. Refer to Appendix B for a more detailed drawing of the model support

sting.

Previous research with the AFIT MTA used various wind tunnel test articles

(IUT). Lancaster and Sellers both used symmetric NACA 0012 models with an 8-

inch span and a 4-inch chord [42]. The difference between the two IUTs were how

they interfaced with the sensors; the IUT used in Lancaster’s work was designed to

attach directly to the sting while the IUTs used in Sellers’s work were designed to

have space in their fuselages to fit around sensors. One was made to attach onto

the Nano25 transducer, and another was made to attach to the AFIT 6 DOF force

72

www.manaraa.com

Figure 18. AFIT MTA model support sting in 9 inch diameter cut-out in plexiglass
window [41]

balance. All three IUT models were designed so that the quarter-chord is in line with

the wrist roll axis of rotation even with the respective sensors inside. To see more

detailed drawings of the NACA 0012 IUTs with sensor interfaces, refer to Appendix

B. IUTs were also created to mimic store separation models for use in Sellers’s and

Bower’s work but will not be discussed in this research [9, 41].

3.6.2 Sensors and Measurements

As outlined in Chapter II, there are two main sensors in use during testing of the

MTA: the ATI Nano25 force/torque transducer and the modified MicroStrain 3DM

GX1 IMU. To reiterate, the Nano25 measures the aerodynamic moments and forces

on the IUT during testing. The IMU measures the orientation of the model. In the

works of Lancaster and Sellers, the IMU had a digital output, but since the work

of Bower, both the Nano25 transducer and the IMU transmit analog outputs via

voltage signals to the PXIe-6123 DAQ (data acquisition) card. This allows for the

sensor measurements to be synchronized.

73

www.manaraa.com

3.6.2.1 Nano25 F/T Transducer

Built specifically for robotic applications, the ATI Nano25 Force/Torque Trans-

ducer offers many benefits as a sensor for the AFIT MTA. It is currently one of the

smallest 6-axis transducers worldwide, yet it still maintains its high strength due to

being manufactured from high yield-strength stainless steel via electrical discharge

machining (EDM) wire-cutting [3]. Because of its high strength, the maximum al-

lowable single-axis overload values range from 7.1 to 15.1 times the rated capacities,

detailed in Table 7 below.

Table 7. ATI Nano25 F/T transducer technical specifications [3]

Calibration Specifications

Sensing Ranges Resolution

Fx, Fy 25 lbf 1/224 lbf
Fz 100 lbf 3/224 lbf
Tx, Ty 25 lbf-in 1/160 lbf-in
Tz 25 lbf-in 1/320 lbf-in

Single-Axis Overload

Fxy ±520 lbf
Fz ±1600 lbf
Txy ±280 lbf
Tz 25 ±560 lbf

Physical Specifications

Weight 0.14 lb
Diameter 0.984 in
Height 0.85 in

In Table 7 above, the variables Fx, Fy, and Fz represent the measured forces in

the x-, y-, and z-directions with respect to the Nano25’s orientation, respectively.

The variables Tx, Ty, and Tz represent the measured torques about the x-, y-, and

z-axes of the Nano25 reference frame, respectively. The variable Fxy represents any

combination of forces in the x-, and y-directions while Txy represents any combination

74

www.manaraa.com

of torques about the x-, and y-axes.

The coordinate system about which the forces and torques are referenced in Table

7 is a standard right-hand rule Cartesian coordinate system with the origin located

on and at the center of the Nano25’s front face where it interfaces with a model. The

positive z-axis extends out normal to the face while the x-axis extends in the direction

of the signal output cable, as shown in Figure (19). A more detailed drawing by ATI

of the Nano25 can be seen in Appendix B.

With respect to the MTA setup, the Nano25 is attached to the MTA via the

sting which connects to the rear of the Nano25 on the side opposite the location of

the sensing reference frame, or to the mounting side of the Nano25. The sting was

designed to place the quarter-chord of a rectangular planform model (4 in chord by

a 8 in wing span with symmetric NACA 0012 airfoil) coincident to the wrist roll

axis of rotation while the Nano25 is mounted between the model and the sting [26].

Originally, this design was chosen to enable pitch oscillation of the model about the

quarter-chord utilizing only 1 DOF of the MTA, to limit interference of the sting

with the airflow affecting the model, and to limit collision of MTA links with the

wind tunnel components [26]. A detailed drawing of the sting by Lancaster can be

seen in Appendix B.

With the Nano25 attached to the sting as described above, the z-axis of Nano25

sensor reference frame aligns with the negative ym-axis of the MTA-model reference

frame, the y-axis of Nano25 sensor reference frame aligns with the negative zm-axis

of the MTA-model reference frame, and the Nano25 x-axis aligns with the positive

xm-axis of the MTA-model reference frame so that the wire extends out the right

wind of the model. Applying this transform to the body-fixed reference frame shows

that the x-, y-, and z-axes of the Nano25 correspond to the yb-, zb-, and xb-axes of

the body fixed frame, respectively.

75

www.manaraa.com

Figure 19. ATI Nano25 sensing reference frame [3]

With this orientation, the positive x-axis aligns with positive side forces, or yaw,

applied to the model/sensor, the positive y-axis aligns with negative normal forces, or

negative lift, and the positive z-axis aligns with negative axial forces, or drag. Then,

Tx, Ty, and Tz represent positive yaw moment, negative pitch moment, and positive

roll moment, respectively. Unless otherwise noted in the setup for each experiment

of this research, the reference frame for the Nano25 is consistent with the description

mentioned above.

The strain gauges of the Nano25 are made of silicon rather than conventionally-

used foil; this provides a signal 75 times higher than would be possible solely for foil

strain gauges. Because the signal is at a much higher level, the Signal-to-Noise Ratio

increases significantly, resulting in a “ear-zero” noise distortion [3]. The Nano25 out-

puts analog voltages from the aforementioned semiconductor strain gauges through

a wheatstone bridge that calculate strain in three internal beams in order to com-

pute the forces and torques applied to the beams. Further details of the Nano25

specifications dependent on the data acquisition system in use are detailed in Section

3.6.2.3.

AFIT originally acquired a Nano25 force/torque transducer to obtain time-accurate

76

www.manaraa.com

force and moment measurements for dynamic applications as described in Sellers’

work for pitch oscillation [41]. AFIT procured a second Nano25 sensor with a signal

output wire extending from the back (negative z-axis), diminishing the interference

of the airflow from the wire [9].

3.6.2.2 Inertial Measurement Unit

AFIT also acquired a MicroStrain® 3DM-GX15 inertial measurement unit (IMU)

for use with the MTA in the subsonic wind tunnel. Its primary use is to measure the

Euler angles of the MTA as a verification of the MTA output. Similarly, because it can

measure accelerations and angular rates, it can be used for feedback. In Lancaster’s

work, the IMU was also used to measure the rigidity characteristics of the sting [26].

There are also a plethora of other direct and computed measurements that the 3DM-

GX15 is capable of [2].

The 3DM-GX15 IMU operates with the use of Micro-Electro-Mechanical System

(MEMS) technology so that it is a lightweight system [2]. More specifically, it con-

tains a triaxial accelerometer and gyroscope paired with on-board processors and an

Adaptive Kalman Filter (AKF) to reduce noise and provide accurate measurements

[2]. Lancaster’s work used a 3DM-GX1, with the major differences being a slower

data output rate and larger dimensions [26]. The technical specifications including

data output rate for the IMU are listed in Table 8.

Bower also used a 3DM-GX1 IMU in his store separation experiments, but the

sensor was manufacturer-modified to give an analog output (at 100 Hz) that can be

synchronized with the Nano25 analog outputs [9]. The work of Lancaster and Sellers

both used IMUs with digital outputs and had to subtract an initial time offset from

the data. Because the sensors were not synchronized, there was more uncertainty

introduced in their data.

77

www.manaraa.com

Table 8. MicroStrain® 3DM-GX1 IMU technical specifications [2]

Accelerometer Gyroscope

Range ±5 g 300°/sec
Resolution < 0.1 mg < 0.008°/sec
Initial Bias Error ±0.002 g ±0.05°/sec
Sampling Rate 4 kHz 4 kHz

Data Output Rate 1 Hz to 1000 Hz
Dimensions 36.0 x 24.4 x 11.1 mm
Weight 16.5 grams

To measure the orientation of the model, the IMU can be attached to the wrist

roll joint of the MTA. Disregarding the flexibility in the MTA links and model sting,

the wrist roll reference frame and the MTA model have the same orientation, but

attaching the IMU to the MTA joint reduces airflow interference by the sensor. Like

the Nano25, the 3DM-GX15 has its own sensor reference frame, with the orienation

as defined in Figure 20. A more detailed drawing including the exact location of the

sensor origin can be seen in Appendix B.

Data from the IMU can be saved as .lvm files via labVIEW, as described in the

next section. Lancaster and Cobb also created a Matlab® GUI to display the Euler

angles from the IMU data in real-time adapted from routines provided by the IMU

Figure 20. MicroStrain® 3DM-GX1 sensing reference frame [2]

78

www.manaraa.com

manufacturer [26].

3.6.2.3 Data Acquisition

Past AFIT Thesis efforts researched the implementation of time-accurate force and

moment measurements for the AFIT subsonic wind tunnel [26, 41, 9]. As such, only

a brief overview of the National Instruments® (NI) data acquisition (DAQ) software

package, known as LabVIEW, will be described here. LabVIEW is a system design

and measurement platform commonly used for DAQ set up in the form of GUIs or

visual block diagrams.

All sensor signals were obtained via a National Instruments® Data Acquisition

(DAQ) system located in a PXIe-1078 chassis. The PXIe-8133, an Intel Core i7

embedded controller, is embedded in the PXIe-1078 chassis. Also within the chassis

are two PXI-6123 DAQ cards, which allow for simultaneous-sampling of the analog

inputs from the sensors.

The Nano25 sensor connects to its own unique signal converter box that also acts

as an off-board power supply. Six channels for the six measured forces and moments

route from the signal converter box into a TB-2709 terminal block which provides

server message block (SMB) connectivity to the PXI-6123 DAQ cards.

The 3DM-GX1 IMU has its own power plug and an analog signal output wire

that plugs directly into the TB-2709 terminal block. Only one attitude angle can be

recorded for a given trajectory because LabVIEW only records voltage data for the

IMU’s attitude change about a single axis [9].

LabVIEW records the voltage data from the Nano25 and the IMU as .lvm files.

The LabVIEW program used in prior MTA experiments can be found in the Appen-

dices of Sellers’s work [41]. However, Bower set the sampling rate to 100 Hertz to

accommodate the use of the 3DM-GX1 IMU and merged the “while-loops” for the

79

www.manaraa.com

Nano25 and IMU signals in order to synchronize the data.

3.6.3 Test Plan

At the conclusion of the thesis, no hardware experiments were completed. The con-

trol laws were not written into the MTA source code (C++ language from Matlab®),

nor was the 6 DOF model complete with its modifications.

Ideally, the plan was to use the same trajectories as used in the 2 DOF simulations

for the elbow pitch and wrist pitch motions to validate that model and quantify the

actual error. The test model would be the NACA 0012 wing model (IUT) adapted for

the Nano25 interface with the 3DM-GX1 IMU attached to the wrist joint as another

source of comparison. Ideally, test runs would occur at 30, 60, 90, and 120 miles per

hour (mph) for 15 seconds at a time with continuous data collection by the Nano25

and the IMU, based on prior research [41].

Once the error was quantified for the 2 DOF motions, more complex arcing trajec-

tories would be tested on the 6 DOF simulation and on the MTA for a similar range

of speeds to validate the Matlab® MTA model and quantify the error based upon

different control laws in use. The arcing trajectories would be an imitation of store

separation, which entails all 6 joints to work synchronously with one another. Store

separation, however, is difficult to test due to the relatively small motions constricted

by the test space as compared to the large size of the links [41]. As such, it is likely

that there will need to be much more work done on the 6 DOF Matlab® model before

being able to track such a complex motion and a modification to the subsonic wind

tunnel test section to expand the current 9 inch opening to accomodate larger motion

tests.

80

www.manaraa.com

3.7 Chapter III Summary

Chapter III described the methodology and setup for analysis and experiments

relevant to the AFIT MTA control system. The MTA design and operation were

detailed, along with a discussion of the format and design of trajectory files used

for MTA motion. Chapter III also covered the MTA’s kinematic joint-space control

algorithms in depth as well as some specific details to include in the 2 DOF and 6 DOF

simulations. Finally, Chapter III provided an overview of the experimental setup that

can be used for validating the control laws of the aforementioned simulation models.

Results from these simulations and planned trajectories for testing the MTA in 2

DOF and 6 DOF motion are presented in the next chapter.

81

www.manaraa.com

IV. Analysis and Results

This chapter presents the analysis and results from the simulations of the 2 DOF

elbow manipulator model and the 6 DOF model in Matlab®. First, the MTA

workspace was explored with varying end effector trajectories and the non-unique

solutions to the inverse kinematics of those trajectories. Different control laws were

tested on the simulations, varying the set of parameters necessary to run the closed-

loop system and comparisons between the models were made. The stability analysis

of each control method is also presented. Different trajectories were also run in order

to observe the difference in system behavior as a function of the input trajectory. This

section also describes the steps in improving the 6 DOF model so as to make it more

representative of the real MTA system. Experimental results were not completed, but

a brief discussion of expected results is examined. Intermediate steps and conclusions

drawn from the simulation results are also presented.

4.1 2 DOF Simulation

To reiterate, the 2 DOF elbow manipulator system represents the last two links of

the MTA where q1 represents of the elbow pitch angle of the MTA, and q2 represents

the wrist pitch angle of the MTA. The two links are joined in a chain configuration

with the origin coincident with the first joint angle. The elbow manipulator can be

oriented in several ways depending on the orientation of the plane formed by the

links with respect to the wind tunnel reference frame. Two orientations used in the

simulations are when the manipulator is in the yi-zi plane and in the xi-yi plane,

which correspond to when the elbow roll angle is at 0° or 90°, respectively. In the 90°

elbow roll configuration, the elbow manipulator model does not include effects due

to gravity because the gravitational force is parallel to the axes of rotation for q1 and

82

www.manaraa.com

q2.

The lengths of the links, as with the rest of the mass properties mentioned in

Section 3.5, were measured from the CAD model provided by RE2, Inc. [5]. Table 9

shows the values of physical properties including the sting as part of link 2. Again, the

parameters denoted by the subscript “e” include mass, length, and inertia of the model

in the wind tunnel. Thus, they are time-varying and subject to higher uncertainty.

Additionally, using the time-varying end effector mass properties changes the 2 DOF

system from autonomous to non-autonomous due to the explicit time-dependence. As

such, there are different conditions to declare stability for a non-autonomous system

which was not taken into account at the time of this research. The stability analysis

in the following sections is valid for the autonomous system only, but the simulations

show the non-autonomous system being controlled unless where otherwise stated.

Table 9. Mass properties of 2 DOF system including sting

Parameter Value

m1 10.395 kg
m2 2.355 kg
me 2.355 + 2.268 sin(t) kg

l1 1.354 m
l2 0.808 m

lc1 0.845 m
lc2 0.161 m
lce 0.186 + 0.019 sin(t) m

I1 1.598 kg·m2

I2 0.095 kg·m2

Ie 0.1295 + 0.1247 sin(t) kg·m2

δe -10 + 5 sin(t)°
g 9.81 m/s2

83

www.manaraa.com

Figure 21. Elbow manipulator reachable workspace

4.1.1 Manipulator Workspace

A manipulator’s workspace is the total volume swept out by the end-effector as

all possible manipulator DOFs are traversed through their respective limits and is

further broken down into a reachable workspace and the dextrous workspace [46]. The

reachable workspace is the total set of points that the end effector can reach while the

dextrous workspace is the subset of the reachable space that the manipulator can reach

with any arbitrary orientation of the end effector. Clearly, the workspace is defined

by the physical geometry of the links, but also by the joint variable ranges, which

are shown in Table 10. As shown in the table, the joint angle ranges for the elbow

pitch joint and wrist pitch joints are -90.3° to 184.5° and -180.4° to -0.6°, respectively.

Then, calculating the geometric forward kinematics described in Equation (88) for the

grid of reachable joint angles gives the reachable workspace of the elbow manipulator

84

www.manaraa.com

model as shown below in Figure 21 [28].

y =l1 cos θ1 + l2 cos (θ1 + θ2)

z =l1 sin θ1 + l2 sin (θ1 + θ2)

(88)

Table 10. MTA joint ranges defined per the RE2, Inc. User Manual [38]

Name of Min Max Max Max Angular
Joint Angle Angle Velocity Acceleration Resolution

(°) (°) (°/s) (°/s2) (°)

Torso Yaw -93.0 96.2 200.0 359.5 0.0008
Shoulder Pitch -55.5 89.4 120.0 279.6 0.0008
Elbow Pitch -90.3 184.5 197.0 253.5 0.00056
Elbow Roll -249.4 69.3 320.0 799.0 0.0008
Wrist Pitch -180.4 -0.6 280.0 479.4 0.0008
Wrist Roll -354.4 370.2 499.0 2929.6 0.0029

Figure 21 also shows an arbitrarily chosen example end effector trajectory defined

by Equation (89) that lies within the elbow manipulator’s workspace where t is some

arbitrary time. This is included to show the position of the manipulator when exe-

cuting a trajectory. The blue arrows in Figure 21 show the directional velocity of the

end effector at those points in time.

ydes =1.346 + 0.5 sin (2πt)

zdes =− 0.3 + 0.8 sin (2πt)

(89)

The algebraic inverse kinematics used to calculate the joint angles from the end ef-

fector position for an elbow manipulator are presented below. For clarity, the notation

shown in Figure 22 will be used. The standard solution for a 2 DOF planar manip-

ulator uses polar coordinates (r, φ), as shown in Figure 22 [28]. Using r =
√
x2 + y2

85

www.manaraa.com

Figure 22. Inverse kinematics for the planar 2 DOF elbow-manipulator [28]

and the law of cosines gives the second joint angle as in Equation (90).

θ2 = π ± α, where α = cos−1
(
l21 + l22 − r2

2l1l2

)
(90)

When α is nonzero, there are two solutions for θ2, represented by the solid and dashed

lines in Figure 22. Then, θ1 is solved for using both solutions of θ2 as in Equation

(91).

θ1 = atan2(y, x)± β, where β = cos−1
(
r2 − l21 − l22

2l1r

)
(91)

where the sign of β is the same as the sign of α used. Depending on the given variables

for the end effector (choosing from x, y, r, φ), there can be anywhere from zero to

multiple solutions, if the position is in the dextrous workspace of the manipulator. If

there are multiple solutions, then all subproblems (i.e. solving for θ2 first) must be

carried through.

For instance, the notional end effector trajectory described in Equation (89) has

two solutions for the joint angles. Although trajectory does lie in the reachable

space as shown in Figure 21, one of the solutions does not satisfy the joint range

constraints. That is, the inverse kinematics of the elbow manipulator does not take

86

www.manaraa.com

Figure 23. Computed joint angles from trajectory described by ydes = 1.346 +
0.5 sin (2πt), zdes = −0.3 + 0.8 sin (2πt)

the joint angle limits into account. Figure 23 shows the calculated angles as compared

to the MTA joint ranges for elbow pitch and wrist pitch. Thus, the solutions to the

inverse kinematics must take the joint limits into account in order to obtain a feasible

solution. This was done with logic statements in Matlab® to pick the appropriate

set of joint angles (see Appendix A). If a trajectory is input that does not have a

closed-form solution for the joint angles, then the script returns an error.

As shown in Figure 23, the end effector trajectory described by Equation (89) does

have one set of angles that stays within the limits of the MTA-specified joint ranges.

The trajectory both falls within the reachable space and stays within the joint limits

of the MTA, so it is feasible. Thus, the trajectory in Equation (89) will be used

in simulation. So far, the inverse kinematics script does not take into account the

joint velocity and acceleration limits. For simulation, the derivatives of the desired

joint angles were determined analytically from the inverse kinematics of the desired

87

www.manaraa.com

trajectory at first because the points are calculated one at a time through ode45 in

Matlab®. However, because analytically solving the inverse kinematics for each time

step is computationally expensive, a look-up table for the specified desired trajectory

was used to interpolate the desired joint positions, velocities, and accelerations at

each time step of the solver.

However, there is another constraint on the end effector’s trajectory, which is the

location of the wind tunnel with respect to the manipulator. Because the location

of the elbow manipulator origin depends on the first two joints of the MTA, the box

representing the confines of the wind tunnel in either axis can be placed at a semi-

arbitrary distance to the elbow manipulator origin as long as the arm does not collide

with the walls of the wind tunnel or the edges of the plexiglass window. As such,

the center of the wind tunnel in both the yi-zi and xi-yi planes can be specified with

respect to the manipulator origin to maximize the reachable workspace inside the

wind tunnel while still subject to the physical constraints of all the MTA joints. This

is a potential optimization problem to orient all of the MTA joints to maximize the

reachable and dextrous space of the last two links. However, it will not be attempted

in these simulations.

4.1.2 PD Control

For proportional-derivative control, both the friction and gravitational terms are

neglected, for ease and in conjunction with the robot operating in the horizontal xi-yi

plane. The PD control law shown in Section 2.6.2.1 can be modified to include gravity

as in Equation (92) where q̃i = qi − qi,des:

τ = −KP q̃ −KDq̇ +G(q) (92)

This control law essentially turns the dynamic system into a mass-spring damper

88

www.manaraa.com

as in Equation (93) below. When the gains Kp and KD are positive definite, then the

system should behave with damped oscillations.

Hq̈ + (C +KD)q̇ +KP q̃ = 0 (93)

To assess the stability of the system with the PD controller, the chosen Lyapunov

function is below in Equation (94) where the two terms correspond to the kinetic

energy and the virtual potential energy associated with the “virtual spring constant”,

KP in the control law [40]. V is positive definite because H is always positive definite

due to the dynamic model structure, and Kp is defined as a positive definite matrix.

V =
1

2

(
q̇THq̇ + q̃TKP q̃

)
(94)

If gravity is neglected in both the dynamics and the control law, the time derivative

of the Lyapunov function can be written as shown in Equation (95).

V̇ = q̇T (τ +KP q̃)

= −q̇TKDq̇

(95)

where V̇ ≤ 0 when KD is independent of q and defined as positive definite. At this

point, Lyapunov analysis points to the control law having local Lyapunov stability;

however, applying the invariant set theorem (IVT) shows that if V̇ = 0, then q̇ = 0.

This implies that q̈ = H−1KP q̃, so for V̇ to be zero, q̃ must also be zero [45]. Thus,

the system is locally asymptotically stable, and the tracking error should converge.

If gravity is included in the system dynamics and the PD control law as shown in

Equation (92), then the Lyapunov function is shown in Equation (92) where P (q) is

89

www.manaraa.com

the total potential energy of the planar manipulator with a root at q = 0.

V =
1

2

(
q̇THq + q̃TKP q̃

)
+ P (q) (96)

The time derivative (V̇) is shown in Equation (97).

V̇ = q̇T (τ +KP q̃) +G(q)q̇

= −q̇TKDq̇

(97)

where the same logic applies as for the system without gravity. Therefore, the origin

is locally asymptotically stable with a PD controller with and without gravity effects.

For the simulation, KD = 100I and KP = 20KD. Both are 4x4 positive definite

matrices. The simulations were run for three seconds for both a sinusoidal input and

step input for the model with gravity included. The sinusoidal inputs are defined by

the notional trajectories in Equation (89) above while the desired trajectories step

inputs are to 50° for q1 and −60° for q2. Figure 24 and Figure 25 show the desired

joint angles and the simulated joint angles over time for the sinusoidal inputs and the

step inputs, respectively. Figure 26 and Figure 27 show the control inputs and the

state errors over time for periodic joint input (1 Hz) and the step inputs, respectively.

As shown in Figure 24, the error does not converge, even when the simulation is

run for longer times. This is due to the ineffectiveness of the PD controller to track

a high-frequency, high-angle trajectory which probably lies outside the linear range

of the controller. Similarly, this corresponds to the notional damped mass-spring-

damper system that the closed-loop system approximates; the system dynamics are

too slow to react to the input.

In Figure 25, the error over time for step inputs to the trajectories does converge to

90

www.manaraa.com

Figure 24. Desired and simulated joint angles over time for periodic joint input (1 Hz)
using PD control

Figure 25. Desired and simulated joint angles over time for step input using PD control

91

www.manaraa.com

Figure 26. Control input and error in state variables over time with periodic joint
inputs (1 Hz) using PD control

Figure 27. Control input and error in state variables over time with step input using
PD control

92

www.manaraa.com

Figure 28. Comparison of desired end effector trajectory and simulated trajectory
using PD control with a 1 Hz input

a steady-state value if given enough time. It does not converge to zero due to the lack

of integral control in the system and because of the nature of proportional trying to

track a step input. However, it does react like an underdamped mass-spring-damper

system with respect to the oscillatory value of the torque input and the states’ error

over time.

The sinusoid trajectory drawn out by the end effector is shown in Figure 28.

Clearly, the PD controller is better for point-to-point robots in need of position control

rather than trajectory control, even without disturbances and uncertainties in the

system. Additionally, the torque used to execute the motion is very large. Computed

torque is not currently an output of the MTA system, but 500 Nm is just under 4500

in-lbs, about halfway in the range of the rated torques for the brand of gearbox used

in the MTA joints according to Lancaster’s work [4, 26]. Thus, the simulated torques

seem reasonable for a simulation of the MTA system if not for the actual MTA.

93

www.manaraa.com

However, acceleration and velocity limits of the joint motors might be strained.

A study of the maximum error as the end-effector input trajectory varied with

respect to frequency was planned, but the computation time limited the utility of the

simulations even with interpolation of the inverse kinematic solution. Investigating

other numerical techniques to solve the simulations was outside the scope of this

thesis.

4.1.2.1 Feedforward Control

Adding feedforward control to the PD controller, the control law becomes

τ = −KP q̃ −Kv
˙̃q +H(qd)q̈d + C(qd, q̇d)q̇d +G(qd) (98)

where the subscript “d” denotes the desired joint angle values [24]. Inputting this

control law into the dynamics yields the closed-loop system defined in terms of the

state vector by Equation (99) below. The gains Kp and Kv are defined as positive

definite, and Kv is analogous to KD in the PD controller.

d

dt

q̃
˙̃q

 =

 ˙̃q

−H−1
(
−Kpq̃ −Kv

˙̃q + [Hd −H]q̈ + Cdq̇d − Cq̇ +Gd −G
)
 (99)

where H = H(q), C = C(q, q̇) and G = G(q). Likewise, Hd = H(qd), Cd = C(qd, q̇d)

and Gd = G(qd).

To assess the stability of the closed loop system, the candidate Lyapunov func-

tion is chosen in Equation (100). Assuming the eigenvalues of Kv are less than the

94

www.manaraa.com

maximum eigenvalues of H, V is positive definite [24].

V =
1

2

q̃
˙̃q

T

P (q)

q̃
˙̃q

 (100)

where

P (q) =

Kp +Kv H(q)

H(q) H(q)

 (101)

The expanded time derivative is then shown in Equation (102) below.

V̇ = ˙̃qTH ˙̃q − q̃TKpq̃ − ˙̃qTKv
˙̃q

+ [q̃ + ˙̃q]T (H −Hd)q̈d

+ [q̃ + ˙̃q](C − Cd)q̇d + ˙̃qTCq̃

+ [q̃ + ˙̃q](G−Gd)

(102)

The derivative of the Lyapunov function can be bounded as in Equation (103).

V̇ ≤ ˙̃qTH ˙̃q − q̃TKpq̃ − ˙̃qTKv
˙̃q

+ c1‖q̃‖2 + c2‖ ˙̃q‖2 + (c1 + 2c2)‖q̃‖‖ ˙̃q‖

+ c3‖q̃‖‖ ˙̃q‖2

(103)

where

c1 =kH‖q̈d‖H + kc2‖q̇d‖2H + kg

c2 =kc1‖q̇d‖H

c3 =kc1

(104)

and where the constants kH , kc1 , kc2 , and kg are the positive upper bounds on the

inertia matrix, Christoffel symbols, and gravity matrix [24]. The subscript “H” denote

the upper bounds of the norms of the vector.

95

www.manaraa.com

Transforming Equation (103) into a quadratic form yields

V̇ ≤ −

‖ ˙̃q‖

‖ ˙̃q‖

T

Q

‖ ˙̃q‖

‖ ˙̃q‖

+ c3‖q̃‖‖ ˙̃q‖2 (105)

where

Q =

λm{Kp} − c1 − c1+2c2
2

− c1+2c2
2

λm{Kv} − λm{M} − c2

 (106)

The symbol λ represents the upper bounds on the eigenvalues of the matrix in

the corresponding curly brackets. If the norms of the error vectors (‖q̃‖ and ‖ ˙̃q‖)

are small, the first term in Equation (105) dominates V̇ . If Q is positive definite,

then V̇ will be locally negative definite. As such, the closed-loop system is locally

exponentially stable. For more information on the conditions for Q to be positive

definite, refer to the code used in Appendix A [24].

For the simulation, the same gains were used as with the PD controller, where

Kv is analogous to KD. Figure 29 and Figure 30 show the desired joint angles and

the simulated joint angles over time for the sinusoidal inputs and the step inputs,

respectively.

Figure 31 and Figure 32 show the control inputs and the state errors over time for

the sinusoidal inputs and the step inputs, respectively. While the system responds

much faster than with PD control alone because of its predictive nature, the necessary

torque to compute such a response for either trajectory approaches the maximum

rated torques for the type of gearboxes used on the MTA [4].

Figure 33 shows the trajectory for the PD-feedforward controller. The elbow

manipulator at time t = 3 seconds overlaps the manipulator at t = 0 seconds. Clearly,

it tracks the trajectory much more closely than with PD control alone. However, the

parameters of the system must be known for this to work, so the simulation is not

96

www.manaraa.com

Figure 29. Desired and simulated joint angles over time for periodic joint input (1 Hz)
using PD-Feedforward control

Figure 30. Desired and simulated joint angles over time for step input using PD-
Feedforward control

97

www.manaraa.com

Figure 31. Control input and error in state variables over time with periodic joint
input (1 Hz) using PD-Feedforward control

Figure 32. Control input and error in state variables over time with step input using
PD-Feedforward control

98

www.manaraa.com

Figure 33. Comparison of desired, periodic end effector trajectory (1 Hz) and simulated
trajectory using PD-Feedforward control

indicative of the real system especially when unknown nonlinearities are added such

as friction and disturbances.

4.1.3 Feedback Linearization

Next, the elbow manipulator dynamics are simulated with a feedback linearization

control law, which should provide better trajectory control than the PD controller

because nonlinear terms of the dynamics are subtracted, leaving only a linear system

behind that the tools of linear control theory apply to. The feedback linearization

control law for a robotic manipulator is discussed in Section 2.6.2.2 but is shown again

here for purposes of consolidation:

τ = Hv + Cq̇ +G, where v = q̈des − 2λ ˙̃q − λ2q̃

99

www.manaraa.com

Figure 34. Desired and simulated joint angles over time for periodic input using Feed-
back Linearization with a 1 Hz input

Figure 35. Control input and error in state variables over time with periodic inputs (1
Hz) using Feedback Linearization

100

www.manaraa.com

Figure 36. Comparison of desired end effector trajectory and simulated trajectory
using feedback linearization with a 1 Hz input

For the simulation, λ = 100, but in general, it is strictly positive. This is because

substituting τ into the dynamics gives the linear second-order equation below, which

was previously shown in Section 2.6.2.2.

¨̃q + 2λ ˙̃q + λ2q̃ = 0

Again, the system is exponentially stable according to the Routh-Hurwitz crite-

ria, so q̃ should converge to zero. The states over time for the desired trajectories

specified in Equation (89) are shown in Figure 34, and the error, q̃ and ˙̃q, and control

inputs are shown in Figure 35 in Chapter II. The simulation was only run for 0.75

seconds because it tracked to near-zero error within a tenth of a second. Showing

the simulation run for longer yields no further insight. The Matlab® code for the

feedback linearization simulation can be seen in Appendix A.

101

www.manaraa.com

As expected, the error is small, on the order of 10−4 degrees for angular position

error. Additionally, the system converges, within a tenth of a second. The step input

results are not shown because if the system can track a sinusoidal input that closely,

the step input will be implemented even more accurately.

Clearly, this control law would be advantageous to implement, but in order to do

so, we must know the structure of the model and its parameters, values that are not

known for the MTA. Additionally, the exact nonlinearities must be known, which is

not possible when friction and disturbances add unmodeled uncertainty to the system.

To update the model, the control law could be adapted to add robustness into the

closed-loop system [46]. Additionally, friction could be added into the model used

[15].

4.1.4 Sliding Mode Control

The control laws for sliding mode control are shown in Section 2.6.2.3 but are

rewritten here. To reiterate, the sliding surface, where the dynamics approach zero,

for a MIMO system is defined as

s = q̇ − q̇r

where q̇r, the reference velocity, is defined as

q̇r = q̇des − Λq̃

where Λ is strictly positive definite. The sliding condition which makes the surface

an invariant set, is then defined as

1

2

d

dt
s2i ≤ −η|si|

102

www.manaraa.com

Finally, the sliding mode control law is defined as

τ = τ̂ − ksgn(s)

where τ̂ = Ĥq̈r+Ĉq̇r+Ĝ is the exactly known upper limit on the input torque given

the known upper bounds, Ĥ , Ĉ, and Ĝ, on the matrices, H ,C, and G, respectively.

With Ĥ = Ĥ −H , and so on, ki is chosen in the vector k to satisfy the sliding

condition as follows.

ki ≤ |[H̃q̈r + C̃q̇r + G̃]i|+ ηi

To reduce chattering, the boundary layer thickness, φ, is introduced as a constant

so that the control law can be rewritten as

τ = τ̂ − ksat(si/φi)

where sat(si/φi) takes on the value of the sign of s if s > φ or is s/φ otherwise. The

boundary layer can also be computed as a pseudo-state variable where its derivative

is defined as

φ̇ = −λφ+ k(qdes)

Finally, the control law becomes

τ = τ̂ − k̄sat(si/φi)

where

k̄i = ki − φ̇i

To prove the stability of the sliding mode controller, consider the candidate Lya-

103

www.manaraa.com

punov function in Equation (107), which is positive definite and radially unbounded,

V =
1

2
sTHs (107)

Taking the time derivative of V and substituting in the dynamics Hq̈ = τ−Cq̇−G

where q̇ = s+ q̇r yields

V̇ = sT (τ −Hq̈r − Cq̇r −G)

= sT (τ̂ − ksgn(s)−Hq̈r − Cq̇r −G)

= sT (H̃q̈r + C̃q̇r + G̃)− Σn
i=1ki|si|

≤ −Σn
i=1ηi|si|

(108)

Therefore, choosing a positive η and conforming to the sliding condition proves

that the error, q̃, approaches zero once the trajectories are on the sliding surface.

Figure 37 shows the desired joint angles and the simulated joint angles over time

with sliding mode control with a constant boundary layer. Figure 38 shows the

desired and simulated states with sliding mode control with a time-varying boundary

layer. Although the simulations do seem to initially track the calculated joint angles,

the error between the desired and actual states follows a sinusoidal pattern if the

simulation is run for long enough. This might be a coding error, but it might also

be a symptom of the fact that the uncertainty bounds of the physical properties

are too high for what the control law is designed for. Unfortunately, even with a

simulation time of three seconds, the simulation took upwards of twenty minutes to

complete. Thus, the best results reached are presented here, even with the obviously

large tracking error for very low inaccuracy in the parameters (1%). To see the

Matlab®, refer to Appendix A.

Figure 39 shows state error and control input over time with sliding mode control

104

www.manaraa.com

Figure 37. Desired and simulated joint angles over time for periodic input (1 Hz) using
sliding mode control, constant boundary layer

Figure 38. Desired and simulated joint angles over time for periodic input (1 Hz) using
sliding mode control, time-varying boundary layer

105

www.manaraa.com

with a constant boundary layer. Figure 40 shows the state error and control input over

time with sliding mode control with a boundary layer. The former has a constant

boundary layer, and the latter has a time-varying boundary layer. For the three

seconds of simulation, it is clear that the torque input followed a cycle corresponding

to the cyclic nature of the desired trajectory.

Figure 41 shows the actual and calculated parameters (when the system is lin-

earized with respect to the parameters) over time with a constant boundary layer.

Figure 42 shows actual and calculated parameters over time with a time-varying

boundary layer. Neither calculate the parameters correctly.

Figure 43 shows the sliding surface and the boundary layer over time with a

constant boundary layer. The boundary layer chart is used for comparison. Figure 44

sliding surface and the boundary layer over time with a time-varying boundary layer.

Adding the time-varying boundary layer has the effect of smoothing out the sliding

surface as well as lessening the control needed, so it was used in both simulations of

the sliding mode controller. It seems that only one of the sliding surfaces is reached,

forcing an error on the other one. This could be an explanation for the sinusoidal

error over long simulation times.

Figure 45 shows the desired and simulated trajectory over time by the system with

sliding mode control with a constant boundary layer. Figure 46 shows the desired and

simulated trajectory over time by the system with sliding mode control with a time-

varying boundary layer. Clearly, neither of the control laws tracked the trajectory.

To see the effect of the inaccuracy in the parameters and the time-changing quality

of the end-effector mass properties, the sliding mode controller was run with 0%

inaccuracy and static values for the end-effector properties as shown in Figure 47 and

Figure 48. Clearly, as shown, even making the system autonomous does not make

the error converge to zero for all states in the time simulated, and the trajectory is

106

www.manaraa.com

Figure 39. Control input and error in state variables over time for periodic input (1
Hz) using sliding mode control, constant boundary layer

Figure 40. Control input and error in state variables over time for periodic input (1
Hz) using sliding mode control, time-varying boundary layer

107

www.manaraa.com

Figure 41. Actual and estimated parameters for periodic input (1 Hz) using sliding
mode control, constant boundary layer

Figure 42. Actual and estimated parameters for periodic input (1 Hz) using sliding
mode control, time-varying boundary layer

108

www.manaraa.com

Figure 43. Sliding surface and boundary layer using sliding mode control, constant
boundary layer with a 1 Hz input

Figure 44. Sliding surface and boundary layer using sliding mode control, time-varying
boundary layer with a 1 Hz input

109

www.manaraa.com

Figure 45. Comparison of desired end effector trajectory and simulated trajectory
using sliding mode control with a constant boundary layer with a 1 Hz input

Figure 46. Comparison of desired end effector trajectory and simulated trajectory
using sliding mode control with a time-varying boundary layer with a 1 Hz input

110

www.manaraa.com

not accurately tracked. As such, sliding mode control was not pursued further.

4.1.5 Adaptive Control

Model reference adaptive control needs information about the exact structure of

the dynamics to be useful. Additionally, one must be able to write the dynamics

linearly with respect to the parameters. For the 2 DOF elbow manipulator, this

takes on the form Y (q, q̇, q̇r, q̈r)a = τ where Y is a 2x4 matrix containing the part of

the dynamics that has only sinusoidal combinations of the states, and a has only the

parameters. Section 2.6.2.4 outlined one notation for writing the dynamics in this

way, but the representation used in simulations is slightly different. The contents of

the parameter matrix is shown below in Equation (109). This configuration does not

take gravity into account.

a1 =m1l
2
c1 + I1 + Ie +me(l

2
1 + l2ce)

a2 =Ie +mel
2
ce

a3 =melc1l1 cos δe

a4 =melc1l1 sin δe

(109)

To reiterate, the MRAC control law is

τ = Y â−KDs = Ĥq̈r + Ĉq̇r −KDs

where the adaptive law is

˙̂a = −ΓY T s

where Γ is a symmetric positive definite matrix. Clearly, since s shows up again,

this control law is a combination of a sliding mode and an adaptive controller. The

parameters are added to the state vector as pseudo-states in the simulation.

111

www.manaraa.com

Figure 47. Desired and simulated states using sliding mode control with 0% inaccuracy
in parameters and static end-effector values with a 1 Hz input

As such, the candidate Lyapunov function is positive definite and radially un-

bounded if defined as in Equation (110) below.

V =
1

2
sTHs+ ãTΓ−1ã (110)

Differentiating the Lyapunov function and making the appropriate substitutions yields

V̇ = −sTKDs (111)

which is negative semi-definite when KD is positive definite. Then, by the invariant

set theorem, if V̇ = 0, then s = 0, implying that q and q̇ → 0 as t → 0. Therefore,

the system is globally asymptotically stable, and the tracking error should converge

to zero.

112

www.manaraa.com

Figure 48. Comparison of desired end effector trajectory and simulated trajectory
using sliding mode control with 0% inaccuracy in parameters and static end-effector
values with a 1 Hz input

113

www.manaraa.com

Figure 49. Desired and simulated joint angles over time for periodic input (1 Hz) using
model reference adaptive control

Figure 50. Actual and calculated parameters over time for periodic input (1 Hz) using
model reference adaptive control

114

www.manaraa.com

Figure 51. Control input and error in state variables over time using model reference
adaptive control with a 1 Hz input

Figure 52. Desired and simulated end effector trajectories using model reference adap-
tive control with a 1 Hz input

115

www.manaraa.com

A simulation of the control law for the reference trajectory described in Equation

(89) can be shown in Figure 49 where KD = 100I and Γ = diag(13.5, 0.2, 0.6, 0.01),

which contains the rounded off initial values of a. In order to simulate the system, the

state had to be appended with âi, and their estimated values can be seen in Figure

50. The code can be seen in Appendix A.

Clearly, the estimated values of the parameters defined in Equation (109) differ

from the actual values especially near the beginning of the simulation. Using MRAC,

then, would be a better way to estimate the system parameters than using sliding

mode control alone. Figure 51 shows the state error and control input over time with

using model reference adaptive control. Although the control input does get rela-

tively large in the negative peaks, it does seem to decrease over time. It follows then,

that the overall error in parameter estimation and states would decrease, needing less

torque input, as the simulation time increases, but computation time was approxi-

mately twenty minutes when analytically solving the inverse kinematics in the solver.

Regardless, the trajectory is mostly tracked, as shown by Figure 52.

4.2 Summary of 2 DOF results

Of note, all of the Lyapunov stability analysis presented here and in Table 11

holds for the autonomous system. However, when the end effector has non-static

values for the mass properties due to aerodynamic effects, the system becomes non-

autonomous due to the explicit time-dependence. Because the simulated system is

non-autonomous, there are different conditions for showing stability as well as dif-

ferent types of stability that the system can exhibit. For instance, the invariant set

theorems are not applicable to non-autonomous systems; therefore, the stability anal-

ysis described in the previous sections is not completely valid for the non-autonomous

system. The valid stability analysis can be performed using alternative, potentially

116

www.manaraa.com

time-dependent Lyapunov functions, but creating such functions to prove stability is

the subject of many papers and is thus outside the scope of this research with the

limited time available.

However, based upon the results of the simulation presented here, the MRAC

scheme is the most suitable control method for the MTA. Not only does it track rel-

atively well to the desired trajectory, but it assumes the least information available

as compared to the other methods. A qualitative comparison of the various control

schemes used in simulation is shown in Table 11. MRAC is useful in system identifi-

cation, and can also be used in a decentralized scheme so that global position control

can be achieved through interactions of its subsystems. Further research on the MTA

should use and improve upon the MRAC control scheme in order to characterize the

MTA system and create an adaptive closed-loop system.

4.3 6 DOF Model

The original plan was to implement one of the control strategies tested on the 2

DOF system onto the actual MTA. However, simulating the controllers on the 2 DOF

model alone proved to be a larger endeavor than at first thought. The computation

time of the 2 DOF system ranged from approximately one to twenty minutes using

simulation times up to three seconds maximum and thus were not ready for hardware

implementation.

Time was spent updating a preexisting 6 DOF robot (PUMA 762) model to be

more akin to the MTA, as described in Chapter III. Both the forward kinematics and

the inverse kinematics were changed to reflect the geometry of the MTA. Additionally,

the graphics were updated with the CAD files provided by RE2, Inc, as shown in

Figure 53.

The MTA source code was downloaded from the MTA computer with the intention

117

www.manaraa.com

Figure 53. PUMA 762 model updated with MTA graphics and kinematics in zero angle
configuration in MTA inertial reference frame

of including the control algorithm in the MTA model, but the update by Neya Systems

proved to be elusive. Necessary improvements include integrating the MTA dynamics

to include gravitational effects, time delays, and physical constraints based upon the

size of the test section in the wind tunnel. Once the dynamics are integrated and

new trajectories are defined, an adaptive control law (decentralized or global) can be

tested on the full 6 DOF MTA model. More specific potential improvements to the

model will be discussed in Chapter V.

4.4 Experiment

Although, as mentioned, the hardware experiments with the MTA did not come

to fruition, a brief overview of the description of the tests and measurements which

needs to be included in future research will be discussed here.

To begin, the MTA source code should be updated to output computed torque,

as a basis of comparison for the simulation data. Then, a new directory needs to be

created for the MTA including the control laws for the last two joints of the MTA,

118

www.manaraa.com

including a PD-feedforward and adaptive sliding mode control. This will include

translating or wrapping the code from Matlab® into C++.

Using the encoder data and the IMU data, the positional error between the desired,

simulated, and experimental trajectories should be calculated. If possible, a system

identification of the MTA, similar to what Lancaster did for one specific motion,

should be completed for the whole system, particularly the last two joints to verify

the dynamic model parameters [26]. Another method is to rely upon the linearity of

parameters and individually excite each joint so that the Y matrix can be computed

at several test points via the method of least squares as described for smaller robotic

manipulators [51]. Once the planar 2 DOF elbow manipulator model is updated, it

can be used as a test bed for future trajectory planning.

Ideally, once the 2 DOF model has been developed and tested, the control laws

can be directly adapted to all six degrees of freedom of the MTA. However, because

computation time in simulating the 2 DOF model has been so high, there will likely

need to be linearizations and numerical analysis done in place of the analytical solu-

tions that this research preferred in order to keep the control laws acting in real-time.

Further recommendations for research will be discussed in Chapter V.

4.5 Chapter IV Summary

Chapter IV presented the simulations of the 2 DOF elbow manipulator model rep-

resenting the elbow pitch and wrist pitch degrees of freedom of the MTA. Specifically,

the physical properties were discussed, as well as the constraints put on creating a

feasible trajectory for the robot arm to follow. With specific assumptions, the 2 DOF

manipulator system was then transformed into a closed-loop system with the use of

PD control, PD with feed-forward control, feedback linearization, sliding mode con-

trol with constant and time-varying boundary layers, and with an adaptive controller.

119

www.manaraa.com

Results of the simulation were presented in figures and discussed. Chapter IV also

briefly covered the 6 DOF MTA model as well as the experimental plan that should

come from the MTA 2 DOF model results. Some of the Matlab scripts discussed in

this chapter can be seen in Appendix A.

120

www.manaraa.com

T
a
b

le
1
1
.

Q
u

a
li

ta
ti

v
e

c
o
m

p
a
ri

so
n

o
f

2
D

O
F

c
o
n
tr

o
l

sc
h

e
m

e
s

P
D

P
D

F
F

F
B

L
S
M

C
M

R
A

C

In
cl

u
d
e
s

G
ra

v
it

y
?

Y
es

Y
es

Y
es

Y
es

N
o

S
ta

b
il
it

y
L

o
ca

l
as

y
m

p
to

ti
c

st
ab

il
it

y
L

o
ca

l
as

y
m

p
-

to
ti

c
st

ab
il
it

y
(c

on
d
it

io
n
al

)

E
x
p

on
en

ti
al

st
a-

b
il
it

y
L

o
ca

l
ex

p
on

en
ti

al
st

ab
il
it

y
G

lo
b
al

as
y
m

p
-

to
ti

c
st

ab
il
it

y

In
fo

rm
a
ti

o
n

N
e
e
d
e
d

S
tr

u
ct

u
re

an
d

p
a-

ra
m

et
er

s
S
tr

u
ct

u
re

an
d

p
a-

ra
m

et
er

s
S
tr

u
ct

u
re

an
d

p
a-

ra
m

et
er

s
S
tr

u
ct

u
re

an
d

b
ou

n
d
s

S
tr

u
ct

u
re

R
o
b
u
st

?
N

o
N

o
N

o
N

o
Y

es

E
rr

o
r

C
o
n
v
e
rg

e
s?

N
o

Y
es

Y
es

N
o

Y
es

Q
u
ic

k
T

ra
n
si

e
n
t

R
e
sp

o
n
se

?
N

o
Y

es
Y

es
N

o
Y

es

121

www.manaraa.com

V. Conclusions and Recommendations

While previous efforts by Lancaster, Sellers, and Bower have focused on establish-

ing and improving upon the reliability of the wind tunnel test platform that is the

MTA, this research focused on building the MTA’s dynamic model from the ground

up. With a high-enough fidelity model and robust-enough control laws, the error in

the MTA’s trajectory tracking can be decreased instead of only measured. Chapter

V details the work that has gone into the creation of the model so far as well as the

control simulations that have been tested to begin the choosing of a more suitable

control law for the MTA.

5.1 Summary of Results

A dynamic model for a 2 DOF planar elbow manipulator with two revolute joints

was derived via the Lagrangian method to represent the last two links of the MTA.

The physical properties of the model were used in the simulation with time-varying

properties of the end-effector to simulate the wind-tunnel environment. A feasible

end-effector trajectory was calculated based upon the joint angle ranges of the MTA

and the reachable space of the manipulator. The closed-loop system consisting of

the 2 DOF model and a control law was simulated to track the feasible desired tra-

jectory. The control laws used include proportional derivative control, proportional

derivative with feedforward control, feedback linearization (computed torque), slid-

ing mode control with different boundary conditions, and an adaptive sliding mode

control. All of the control laws were stable at least locally via Lyapunov analysis,

but the simulations did not all converge to zero tracking error due to the nature

of the time-varying parameters and the inherent system lag. Additionally, most of

the simulations included assumptions that are not representative of the real MTA

122

www.manaraa.com

control system problem such as lack of availability of exact physical parameters and

unmodeled disturbances including friction.

5.2 Significance of Research

Although this thesis started out with an emphasis on experimental control of the

MTA, the completed simulations of the 2 DOF model yield some insight. First, it

provides a start of a model of the MTA based upon first principles, including work-

energy. Although it might be computationally costly to go the analytical route, doing

so can provide insight to the true dynamics of the MTA. For instance, one is more

likely to conclude that tracking error is based upon the model’s lack of a friction term,

or the wrong bounds on the inertial matrix, as opposed to having to attribute error

to finite wordlength.

As the model fidelity increases, it can be used to design trajectories for the actual

MTA as well as pick the control law that will be most suitable for the wind tunnel

experiment planned. Integrated with the research done on the time-accuracy of the

wind-tunnel sensors and DAQ system performed by Sellers and Bower, having a

trajectory tracking system will increase the reliability and repeatibility of dynamic

tests executed in the AFIT subsonic wind tunnel. Not only will this increase the

capability and quality of research that AFIT outputs with the MTA, but will help

the Air Force at large with the data that accurate dynamic wind tunnel testing will

provide for design and validation of future aerospace technologies.

5.3 Recommendations for Future MTA Testing

Although the significance of providing a suitable nonlinear control method for the

MTA is unquestionable, there is still much that needs to be done before the MTA

can be utilized to its full potential.

123

www.manaraa.com

Specific short-term research goals include finding a way to calculate the inverse

kinematics including the joint velocities and accelerations more quickly when called

during a simulation. As the code stands, the functions are derived symbolically at each

time step in the ode45 solver which drives up the computation time significantly. To

do this, the author recommends either solving the inverse kinematics with an iterative

scheme, or to have the joint angles, velocities, and positions fully calculated and input

to a look-up table. The look-up table method requires an interpolation of the desired

joint kinematic values at each time step of the solver. This will be quicker than

solving the inverse kinematics each time, but requires a different look-up table for

each desired trajectory. Before such a table should be created, the desired trajectory

should also be limited to the angular velocity and acceleration software limits already

discussed in Chapter IV. This way, the computed torque will be more comparable

to what the MTA will calculate and can actually control. Adding the limits will be

simple if the trajectories have a low enough frequency. Another way to increase the

computation speed might be to calculate the product of exponentials formulation for

the MTA and using those to calculate the pseudo- or inverse manipulator Jacobian,

disregarding singularities [28].

Depending on the trajectory being tested, using PD control might still be a feasible

alternative to an adaptive control law due to its simplicity. However, the MTA must

be near its linear region. Thus, when the 6 DOF MTA model is fully updated with

its dynamics, it would be prudent to test the PD-feedforward control law on the full

system for simple trajectories.

In the near future, as discussed in Chapter IV, the control laws used on the 2

DOF model should be executed on the AFIT MTA as a basis of validation of the

dynamic model. From there, the experimentally-obtained data can be used to update

the physical properties of the model so that simulation of the control laws better

124

www.manaraa.com

represent actual MTA performance. Similarly, system identification of the AFIT

MTA’s physical parameters using a least squares method can help with the model

updates.

At the same time, developing more robust control laws (with respect to distur-

bances to the end-effector) will be of primary importance once aerodynamic forces

and moments are applied during actual testing. When these are introduced, the com-

putation time will greatly increase, so the next researcher might have to revert to

iterative approaches to calculating the dynamics and kinematics as opposed to using

the analytical equations. Doing so will entail quantifying the error introduced using

a numerical method and ensuring it is acceptable for the trajectory-tracking task.

Once an acceptable amount of tracking error has been reached for the elbow pitch

and wrist pitch joints of the MTA in trajectory tracking, the control laws can be

implemented on the 6 DOF model and then the MTA itself in the same approach as

for the 2 DOF model.

In the long-term, the goal is to provide a simple way to design a trajectory that

easily fits within the constraints imposed by the MTA software and hardware and also

by the location and size of the wind-tunnel test section. This will most likely entail

path-planning optimization, many examples of which exist in literature. Constraints

would include the angular position, velocity, and acceleration motor limits, physical

space of the wind tunnel test-section, and the bounds on the tuning parameters

if using certain control laws. Creating a simple method to create new prescribed

trajectories will ensure that the MTA’s utility is fully realized.

125

www.manaraa.com

Appendix A. Matlab®, C++, and LabVIEW code

This appendix includes some of the Matlab® code written for simulations of the

closed-loop systems. They include a function for the inverse kinematics of the planar

2 DOF elbow manipulator and the mass properties of the MTA’s last two links.

Additionally, the routines for the PD controller, the PD-Feedforward controller, the

sliding mode controller both with a constant and a time-varying boundary layer, and

an adaptive controller are listed. Also listed is the code used to graph the end effector

trajectories for comparison once the control schemes are run.

Inverse kinematics for planar elbow manipulator with joint limits

1 function [theta1,theta2]= invkin2(x,y,param,t);

2 %Returns the angles of the first two links in the robotic arm as a list.

3 % returns −> (th1, th2) (RAD), th1 is angle of link 1 wrt ground, th2

4 % is angle of link 2 wrt link 1

5 % input: x,y coordinates of end effector

6

7 % Not good with symbolic functions!

8

9 L1 = param.L1; L2 = param.L2;

10 r = sqrt(x.ˆ2 + y.ˆ2);

11

12 % Check if the region is feasible if coordinates are values/nonsymbolic:

13 if isa(x,'double') && isa(y,'double')

14 if (r>(L1 + L2))

15 fprintf('Cannot reach coordinates with current geometry \n')
16 end

17 end

18

19 % Do the inverse kinematics calcs:

20 a = acos((L1.ˆ2+L2.ˆ2−r.ˆ2)./(2.*L1.*L2));
21 th2 1 = pi + a;

22 th2 2 = pi − a; % two possible solutions

23 b = acos((r.ˆ2+L1.ˆ2−L2.ˆ2)./(2.*L1.*r));
24 th1 1 = atan2(y,x) + b; % sign of b corresponds to sign of a

25 th1 2 = atan2(y,x) − b;

26

27

28

29 % Wrap all the angles:

30 th2 1 = wrapToPi(th2 1);

31 th2 2 = wrapToPi(th2 2);

126

www.manaraa.com

32 th1 1 = wrapToPi(th1 1);

33 th1 2 = wrapToPi(th1 2);

34

35 % Check to see if both solutions are the same:

36 if (th2 1==th2 2) % pretty much if theta2 is pi

37 theta1 = th1 1; % size is 1xlength(t)

38 theta2 = th2 1;

39 fprintf('There is one solution to IK.\n')
40 elseif (th2 1 6=th2 2)

41 theta1 = [th1 1;th1 2]; % row vectors (2xlength(t))

42 theta2 = [th2 1;th2 2];

43 fprintf('There are two solutions to IK.\n')
44 end

45

46 % Check if angles are within joint ranges (for MTA EP and WP):

47 for i=1:size(theta1,1) % counts to # of rows in theta1

48 if (max(theta1(i,:))>deg2rad(184.5)) | ...

(min(theta1(i,:))<deg2rad(−90.3)) % OR statement

49 fprintf('Solution %1.0f falls outside theta 1 range. \n',i)
50 theta1(i,:)=zeros(1,size(theta1,2)); % zero out that row in both ...

angles

51 theta2(i,:)=zeros(1,size(theta2,2));

52 end

53 if (max(theta2(i,:))>deg2rad(−0.6)) | ...

(min(theta2(i,:))<deg2rad(−180.4)) % OR statement

54 fprintf('Solution %1.0f falls outside theta 2 range. \n',i)
55 theta2(i,:)=zeros(1,size(theta2,2)); % delete that row in both angles

56 theta1(i,:)=zeros(1,size(theta1,2));

57 end

58 end

59

60 % Delete zeroed out rows

61 theta1 = theta1(any(theta1,2),:);

62 theta2 = theta2(any(theta2,2),:);

63 % If both are zeroed out, returns No solution

64 if (any(theta1)==0 | any(theta2)==0)

65 fprintf('No solution within angle ranges. \n')
66 end

67

68 end

2 DOF mass properties/simulation setup

1 %% Define the mass properties (metric units) and desired trajectories ...

(angles) for 2 DOF planar robot

2 % 20 Sep 2018

3 % A) mass properties for notional example

127

www.manaraa.com

4 % B) mass properties for MTA from CAD with sting

5 % C) desired trajectories (see twoDof plotInvKin.m)

6 % D) inverse kinematics example

7

8 % Works with twoDof PD, PDFF, FBL

9 % not with SM,

10 % Will work with twoDof adaptive control, SMTVBL, MRAC

11

12 %% (A) Example with notional values (non MTA values at all)

13 %{
14 g = 9.81; % gravitational constant

15 m1 = 1; % mass of link 1 (shoulder to elbow) kg

16 me = 2; % mass of link 2 +b object

17 L1 = 1; % length of link 1

18 r1 = 0.5; % length from actuator 1 to centroid of link 1 (r1=l c1)

19 re = 0.6; % length from actuator 2 to centroid of link 2 +object (r2=l c2)

20 I1 = 0.12;

21 Ie = 0.25;

22 delE = 30*pi/180; % angle between link two and link two+objects effective ...

centroid line

23 % define parameters for ode45 and animating

24 param.g = g;

25 param.m1 = m1; param.me = me; param.m2 = me;

26 param.L1 = L1; param.L2 = L1;

27 param.r1 = r1; param.re = re; param.r2 = re;

28 param.I1 = I1; param.Ie = Ie; param.I2 = Ie;

29 param.delE = delE;

30 %}
31 %% (B) Dimensions for MTA from RE2 SolidWorks CAD file with sting

32 % see MTA dimensions.xls [metric units, rad]

33 syms t

34 g = 9.81; % gravitational constant

35 m1 = 10.395; % mass of link 1,kg (elbow to wrist)

36 m2 = 2.355; % mass of link 2, kg (wrist + sting)

37 me = 2.355+2.268*sin(t); % mass of link 2 +sting +object, kg

38 L1 = 1.354; % length of link 1, m(elbow to wrist)

39 L2 = 0.808; % length of link 2, m (wrist + sting)

40 r1 = 0.845; % length from actuator 1 to centroid of link 1 (r1=l c1)

41 r2 = 0.161; % length from actuator 2 to centroid of link 2+sting (r2=l c2)

42 re = 0.186+0.019*sin(t); % length from actuator 2 to centroid of link 2 ...

+sting +object(re=l ce)

43 I1 = 1.598; % moment of inertia of link 1, kg−mˆ2
44 I2 = 0.095; % moment of inertia of link 2+sting, kg−mˆ2
45 Ie = 0.1295+0.1247*sin(t); % moment of inertia of link 2+sting+object, ...

kg−mˆ2
46 delE = (−10+5*cos(t))*pi/180; % angle(rad) between link 2 and link ...

2+sting+object effective centroid line

128

www.manaraa.com

47

48 % define parameters for ode45 and animations

49 param.g = g;

50 param.m1 = m1; param.me = me; param.m2 = m2;

51 param.L1 = L1; param.L2 = L2;

52 param.r1 = r1; param.re = re; param.r2 = r2;

53 param.I1 = I1; param.Ie = Ie; param.I2 = I2;

54 param.delE = delE;

55

56 %% (C) Desired Trajectories

57 %param.inputMethod = 2;

58 % Trajectories are defined in function called below:

59 %[q1 d,dq1 d,ddq1 d,q2 d,dq2 d,ddq2 d]=twoDof DesiredTrajectories(t,param);

60

61 %% (D) Inverse Kinematics Example

62 % Check to make sure joint angle ranges for MTA are satisfied

63 % See twoDof plotInvKin for more details/plots

64 % invkin2.m is the function for determing the inverse kinematics

65 % syms t

66 % t=linspace(0,3,500);

67 % y d = 1.346+0.5*sin(2*pi*t);

68 % z d = −0.3+0.8*cos(2*pi*t);
69 %

70 % [theta1,theta2]= invkin2(y d,z d,param); % should give angles symbolically

71 % hold on

72 % plot(t,rad2deg(theta1),'DisplayName',...

73 '$\theta {1,des}$','Color','b') % plot theta1

74 % plot(t,rad2deg(theta2),'DisplayName',...

75 '$\theta {2,des}$','Color','r') % plot theta2

76 % plot(t,−90.3*ones(size(t)),'−−','color','b',...
77 'DisplayName','$\theta {1,lim}$','linewidth',2)
78 % plot joint angle limits

79 % plot(t,184.5*ones(size(t)),'−−','color','b',...
80 'HandleVisibility','off','linewidth',2)

81 % plot(t,−180.4*ones(size(t)),'−−','color','r',...
82 'DisplayName','$\theta {2,lim}$','linewidth',2)
83 % plot(t,−0.6*ones(size(t)),'−−','color','r',...
84 'HandleVisibility','off','linewidth',2)

85 % legend('show')

86 % xlabel('Time (s)'); ylabel('Angle (deg)')

87 % hold off; grid on

88 % %title('Check to make sure these are within the limits')

PD Controller

1 %% PD Control Example

2 % 20 Sep 2018

129

www.manaraa.com

3 clc; clear all; close all

4

5 %% INPUTS

6 % Set mass properties

7 twoDof A massProperties % run the file

8

9 % Set simulation time span

10 t0 = 0; tf = 3; tspan = [t0 tf];

11

12 % Set input method (see twoDof DesiredTrajectories.m)

13 param.inputMethod =3; % 2 is step, 3 is sinusoid

14

15 % Define initial conditions for states (starts at q1 d)

16 if param.inputMethod ==3

17 q10 = 0.9405; dq10 = 0; q20 = −1.7660; dq20 = 0; % for sinusoid

18 elseif param.inputMethod ==2

19 q10 = 0; dq10 = 0; q20 = 0; dq20 = 0; % for step

20 end

21 X0 = [q10; dq10; q20; dq20];

22

23 % Set properties specific to the control law

24 K d = 100*eye(2); param.K d = K d;

25 K p = 20*K d; param.K p = K p;

26

27 % Do the simulation

28 options = []; [t,X] = ode45(@PDcontroller, tspan, X0, options, param);

29 q1 = X(:,1); dq1 = X(:,2); q2 = X(:,3); dq2 = X(:,4);

30 % calculate control

31 [q1 d ,q2 d,dq1 d,dq2 d,q1tilde, q2tilde, tau] = PDcontrol(t,X,param);

32

33 %% Plot Figures

34 figure () % STATES

35 subplot(411)

36 plot(t,rad2deg(q1),t,rad2deg(q1 d),'−−');legend('True','Desired')
37 ylabel('$q 1 (deg)$'); grid minor

38 %title(['$PD Control: K D=$',num2str(K d(1)),'$*I, ...

K p=$',num2str(K p(1)),'*I'])

39 subplot(412)

40 plot(t,rad2deg(q2),t,rad2deg(q2 d),'−−')%;legend('True','Desired')
41 ylabel('$q 2 (deg)$'); grid minor

42 subplot(413)

43 plot(t,rad2deg(dq1),t,rad2deg(dq1 d),'−−')%;legend('True','Desired')
44 ylabel('$\dot{q} 1$ (deg/s)'); grid minor

45 subplot(414)

46 plot(t,rad2deg(dq2),t,rad2deg(dq2 d),'−−')%;legend('True','Desired')
47 xlabel('time (s)');

48 ylabel('$\dot{q} 2$ (deg/s)'); grid minor

130

www.manaraa.com

49 %saveas(gcf,'PDstates.png')

50

51 figure () % ERROR AND CONTROL

52 subplot(2,2,1)

53 plot(t,rad2deg(q1tilde),t,rad2deg(q2tilde))

54 legend('$\tilde{q} 1$','$\tilde{q} 2$')

55 ylabel('$q i$ Error (deg)');xlabel('time (s)');grid minor

56 %title(['$PD Control: K D=$',num2str(K d(1)),'$*I, ...

K p=$',num2str(K p(1)),'*I'])

57 subplot(2,2,2)

58 plot(t,rad2deg(dq1−dq1 d),t,rad2deg(dq2−dq2 d))

59 legend('$\dot{\tilde{q}} 1$','$\dot{\tilde{q}} 2$')

60 ylabel('$\dot{q} i$ Error (deg/s)');xlabel('time (s)');grid minor

61 subplot(2,2,3)

62 plot(t,squeeze(tau(1,:,:)),t,squeeze(tau(2,:,:)))

63 legend('$\tau 1$','$\tau 2$')

64 xlabel('time (s)'); ylabel('$\tau i (N−m)$');grid minor

65 subplot(2,2,4)

66 plot(rad2deg(q1tilde),rad2deg(dq1−dq1 d),rad2deg(q2tilde),rad2deg(dq2−dq2 d));

67 %title(['\lambda=', num2str(lam),', \eta 1=', num2str(eta1)])

68 xlabel('$\tilde{q} i (deg)$');

69 ylabel('$\dot{\tilde{q}} i (deg/s)$')

70 legend('Joint 1','Joint 2');grid minor

71 %saveas(gcf,'PDerror.png')

72

73 %% Animate the simulation

74 % addpath('Draw Robot')

75 % z = [q1'; dq1'; q2'; dq2']; % actual states

76 % A.plotFunc = @(t,z)(drawRobot(t,z,param));

77 % A.speed = 0.5;

78 % A.figNum = 101;

79 % %animate(t,z,A)

80

81 %% The control Law

82 function xdot= PDcontroller(t,X,param)

83 % unpack X = [q1;dq1;q2;dq2]=[q1; dq1; q2; dq2]

84 q1 = X(1); dq1 = X(2); q2 = X(3); dq2 = X(4);

85

86 % define parameters

87 g = param.g;

88 m1 = param.m1; me = param.me; % e means link 2 + whatever it's holding

89 L1 = param.L1; delE = param.delE;

90 r1 = param.r1; re = param.re;

91 I1 = param.I1; Ie = param.Ie;

92 K d = param.K d; K p = param.K p;

93 me = eval(me); % evaluate the time−changing parameters

94 re = eval(re);

131

www.manaraa.com

95 Ie = eval(Ie);

96 delE = eval(delE);

97

98 % define true parameters

99 a1 = I1+m1*r1ˆ2+Ie+me*reˆ2+me*L1ˆ2;

100 a2 = Ie+me*reˆ2;

101 a3 = me*L1*re*cos(delE);

102 a4 = me*L1*re*sin(delE);

103

104 % define coefficient matrices

105 H11 = a1+2*a3*cos(q2)+2*a4*sin(q2);

106 H22 = a2;

107 H12 = a2+a3*cos(q2)+a4*sin(q2);

108 H21 = H12;

109 h = a3*sin(q2)−a4*cos(q2);
110 G1 = m1*r1*g*cos(q1) + me*g*(re*cos(q1+q2) + L1*cos(q1));

111 G2 = me*g*re*cos(q1+q2);

112 H mat = [H11 H12; H21 H22];

113 c mat = [−h*dq2 −h*(dq1+dq2); h*dq1 0];

114

115 % Desired trajectories

116 [q1 d,dq1 d,ddq1 d,q2 d,dq2 d,ddq2 d]=twoDof DesiredTrajectories(t,param);

117 qtilde = [q1−q1 d; q2−q2 d];

118

119 % Calculate PD control

120 tau = −K p*qtilde−K d*[dq1;dq2]+[G1;G2];

121

122 % Calculate True Response

123 ddQ=inv(H mat)*(tau−c mat*[dq1; dq2]−[G1;G2]);
124 ddq1 = ddQ(1);

125 ddq2 = ddQ(2);

126

127 xdot = [dq1; ddq1; dq2; ddq2];

128 end

129

130 %% Get other Outputs

131 function [q1 d ,q2 d ,dq1 d,dq2 d,q1tilde, q2tilde, tau] = ...

PDcontrol(t,X,param)

132 % unpack X = [q1;dq1;q2;dq2]=[q1; dq1; q2; dq2]

133 q1 = X(:,1); dq1 = X(:,2); q2 = X(:,3); dq2 = X(:,4);

134 % define parameters

135 g = param.g;

136 m1 = param.m1; me = param.me; % e means link 2 + whatever it's holding

137 L1 = param.L1; delE = param.delE;

138 r1 = param.r1; re = param.re;

139 I1 = param.I1; Ie = param.Ie;

140 K d = param.K d; K p = param.K p;

132

www.manaraa.com

141 me = eval(me); % evaluate the time−changing parameters

142 re = eval(re);

143 Ie = eval(Ie);

144 delE = eval(delE);

145

146 G1= m1*r1*g*cos(q1) + me.*g.*(re.*cos(q1+q2) + L1*cos(q1));

147 G2 = me.*g.*re.*cos(q1+q2);

148

149 % Desired trajectories

150 [q1 d,dq1 d,ddq1 d,q2 d,dq2 d,ddq2 d]=twoDof DesiredTrajectories(t,param);

151 q1tilde = q1−q1 d;

152 q2tilde = q2−q2 d;

153

154 % Calculate PD control

155 for i = 1:length(q1tilde)

156 tau(:,:,i) = −K p*[q1tilde(i);q2tilde(i)]−K d*[dq1(i);dq2(i)]+[G1(i);G2(i)];

157 end

158

159 end

PD-FF Controller

1 %% PD with Feedback Control

2 % 20 Sep 2018

3 % From "PD Control with Computed Feedforward of Robot Manipulators: A design

4 % Procedure" 1994 IEEE paper, Kelly & Salgado

5 % Control law assumes exact knowledge of M,C,G matrices

6 clc; clear all; %close all

7

8 %% INPUTS

9 % Set mass properties

10 twoDof A massProperties % run the file

11

12 % Set simulation time span

13 t0 = 0; tf = 3; tspan = [t0 tf];

14

15 % Set input method (see twoDof DesiredTrajectories.m)

16 param.inputMethod =3; % 2 is step, 3 is sinusoid

17

18 % Define initial conditions for states (starts at q1 d)

19 if param.inputMethod ==3

20 q10 = 0.9405; dq10 = 0; q20 = −1.7660; dq20 = 0; % for sinusoid

21 elseif param.inputMethod ==2

22 q10 = 0; dq10 = 0; q20 = 0; dq20 = 0; % for step

23 end

24 X0 = [q10; dq10; q20; dq20];

25

133

www.manaraa.com

26 % Set properties specific to the control law (must be pos. def.)

27 K v = 100*eye(2); param.K v = K v;

28 K p = 20*K v; param.K p = K p;

29

30 % Do the simulation

31 options = []; [t,X] = ode45(@PDcontroller, tspan, X0, options, param);

32 q1 = X(:,1); dq1 = X(:,2); q2 = X(:,3); dq2 = X(:,4);

33

34 % Calculate control

35 [q1 d ,q2 d,dq1 d,dq2 d,qtilde, qtilde dot, tau] = PDcontrol(t,X,param);

36

37 %% Plot Figures

38 figure (1) % STATES

39 subplot(411)

40 plot(t,rad2deg(q1),t,rad2deg(q1 d),'−−');legend('True','desired')
41 ylabel('$q 1 (deg)$'); grid minor

42 %title(['PD FF: $K v$=',num2str(K v(1)),'I, $K p$=',num2str(K p(1)),'I'])

43 subplot(412)

44 plot(t,rad2deg(q2),t,rad2deg(q2 d),'−−')%;legend('True','desired')
45 ylabel('$q 2 (deg)$'); grid minor

46 subplot(413)

47 plot(t,rad2deg(dq1),t,rad2deg(dq1 d),'−−')%;legend('True','desired')
48 ylabel('$\dot{q} 1$ (deg/s)'); grid minor

49 subplot(414)

50 plot(t,rad2deg(dq2),t,rad2deg(dq2 d),'−−')%;legend('True','desired')
51 xlabel('time (s)');

52 ylabel('$\dot{q} 2$ (deg/s)'); grid minor

53 %saveas(gcf,'PDFFstates.png')

54

55 figure (2) % ERROR AND CONTROL

56 subplot(2,2,1)

57 plot(t,rad2deg(qtilde(1,:)),t,rad2deg(qtilde(2,:)))

58 legend('$\tilde{q} 1$','$\tilde{q} 2$')

59 ylabel('$q i$ Error (deg)');xlabel('time (s)');grid minor

60 %title(['PD FF: $K v$=',num2str(K v(1)),'I, $K p$=',num2str(K p(1)),'I'])

61 subplot(2,2,2)

62 plot(t,rad2deg(qtilde dot(1,:)),t,rad2deg(qtilde dot(2,:)))

63 legend('$\dot{\tilde{q}} 1$','$\dot{\tilde{q}} 2$')

64 ylabel('$\dot{q} i$ Error (deg/s)');xlabel('time (s)');grid minor

65 subplot(2,2,3)

66 plot(t,squeeze(tau(1,:,:)),t,squeeze(tau(2,:,:)))

67 legend('$\tau 1$','$\tau 2$')

68 xlabel('time (s)'); ylabel('$\tau i (N−m)$');grid minor

69 subplot(2,2,4)

70 plot(rad2deg(qtilde(1,:)),rad2deg(qtilde dot(1,:)),rad2deg(qtilde(2,:)),...

71 rad2deg(qtilde dot(2,:))); %title(['\lambda=', num2str(lam),', \eta 1=', ...

num2str(eta1)])

134

www.manaraa.com

72 xlabel('$\tilde{q} i (deg)$');

73 ylabel('$\dot{\tilde{q}} i (deg/s)$')

74 legend('Joint 1','Joint 2');grid minor

75 %saveas(gcf,'PDFFerror.png')

76

77 %% Animate the simulation

78 % addpath('Draw Robot')

79 % z = [q1'; dq1'; q2'; dq2']; % actual states

80 % A.plotFunc = @(t,z)(drawRobot(t,z,param));

81 % A.speed = 0.5;

82 % A.figNum = 101;

83 % %animate(t,z,A)

84

85 %% The control Law

86 function xdot= PDcontroller(t,X,param)

87 % unpack X = [q1;dq1;q2;dq2]=[q1; dq1; q2; dq2]

88 q1 = X(1); dq1 = X(2); q2 = X(3); dq2 = X(4);

89

90 % define parameters

91 g = param.g;

92 m1 = param.m1; me = param.me; % e means link 2 + whatever it's holding

93 L1 = param.L1; delE = param.delE;

94 r1 = param.r1; re = param.re;

95 I1 = param.I1; Ie = param.Ie;

96 K v = param.K v; K p = param.K p;

97 me = eval(me); % evaluate the time−changing parameters

98 re = eval(re);

99 Ie = eval(Ie);

100 delE = eval(delE);

101

102 % define true parameters

103 a1 = I1+m1*r1ˆ2+Ie+me*reˆ2+me*L1ˆ2;

104 a2 = Ie+me*reˆ2;

105 a3 = me*L1*re*cos(delE);

106 a4 = me*L1*re*sin(delE);

107

108 % define coefficient matrices

109 H11 = a1+2*a3*cos(q2)+2*a4*sin(q2);

110 H22 = a2;

111 H12 = a2+a3*cos(q2)+a4*sin(q2);

112 H21 = H12;

113 h = a3*sin(q2)−a4*cos(q2);
114 G1 = m1*r1*g*cos(q1) + me*g*(re*cos(q1+q2) + L1*cos(q1));

115 G2 = me*g*re*cos(q1+q2);

116 H = [H11 H12; H21 H22];

117 C = [−h*dq2 −h*(dq1+dq2); h*dq1 0];

118

135

www.manaraa.com

119 % desired trajectories

120 [q1 d,dq1 d,ddq1 d,q2 d,dq2 d,ddq2 d]=twoDof DesiredTrajectories(t,param);

121

122 qtilde = [q1−q1 d; q2−q2 d];

123 qtilde dot = [dq1−dq1 d; dq2−dq2 d];

124

125 % Calculate Feedforward Terms (assume model parameters are known)

126 H11 d = a1+2*a3*cos(q2 d)+2*a4*sin(q2 d);

127 H22 d = a2;

128 H12 d = a2+a3*cos(q2 d)+a4*sin(q2 d);

129 H21 d = H12 d;

130 h d = a3*sin(q2 d)−a4*cos(q2 d);

131 G1 d = m1*r1*g*cos(q1 d) + me*g*(re*cos(q1 d+q2 d) + L1*cos(q1 d));

132 G2 d = me*g*re*cos(q1 d+q2 d);

133 H d = [H11 d H12 d; H21 d H22 d];

134 C d = [−h d*dq2 d −h d*(dq1 d+dq2 d); h d*dq1 d 0];

135 G d = [G1 d;G2 d];

136

137 % The Full Control Law: PD control with Feedforward

138 % tau=Kp*qtilde+Kv*qtilde dot+M(q d)*ddq d+C(q d,dq d)*dq d+G(q d);

139 % feedforward part starts hereˆ

140 tau = −K p*qtilde−K v*qtilde dot+ H d*[ddq1 d; ddq2 d]+C d*[dq1 d; ...

dq2 d]+G d;

141

142 % Calculate True Response

143 ddQ=inv(H)*(tau−C*[dq1; dq2]−[G1;G2]);
144 ddq1 = ddQ(1);

145 ddq2 = ddQ(2);

146

147 xdot = [dq1; ddq1; dq2; ddq2];

148 end

149

150 %% Get other Outputs

151 function [q1 d ,q2 d ,dq1 d,dq2 d,qtilde, qtilde dot, tau] = ...

PDcontrol(t,X,param)

152 % unpack X = [q1;dq1;q2;dq2]=[q1; dq1; q2; dq2]

153

154 q1 = X(:,1); dq1 = X(:,2); q2 = X(:,3); dq2 = X(:,4);

155 % define parameters

156 g = param.g;

157 m1 = param.m1; me = param.me; % e means link 2 + whatever it's holding

158 L1 = param.L1; delE = param.delE;

159 r1 = param.r1; re = param.re;

160 I1 = param.I1; Ie = param.Ie;

161 K v = param.K v; K p = param.K p;

162 me = eval(me); % evaluate the time−changing parameters

163 re = eval(re);

136

www.manaraa.com

164 Ie = eval(Ie);

165 delE = eval(delE);

166

167 % define true parameters

168 a1 = I1+m1*r1ˆ2+Ie+me.*re.ˆ2+me.*L1ˆ2;

169 a2 = Ie+me.*re.ˆ2;

170 a3 = me.*L1.*re.*cos(delE);

171 a4 = me.*L1.*re.*sin(delE);

172 G1 = m1*r1*g.*cos(q1) + me.*g.*(re.*cos(q1+q2) + L1.*cos(q1));

173 G2 = me.*g.*re.*cos(q1+q2);

174

175 % desired trajectories

176 [q1 d,dq1 d,ddq1 d,q2 d,dq2 d,ddq2 d]=twoDof DesiredTrajectories(t,param);

177

178 qtilde = [q1−q1 d, q2−q2 d]';

179 qtilde dot = [dq1−dq1 d, dq2−dq2 d]';

180

181 % Calculate Feedforward Terms (assume model parameters are known)

182 H11 d = a1+2*a3.*cos(q2 d)+2*a4.*sin(q2 d);

183 H22 d = a2;

184 H12 d = a2+a3.*cos(q2 d)+a4.*sin(q2 d);

185 H21 d = H12 d;

186 h d = a3.*sin(q2 d)−a4.*cos(q2 d);

187 G1 d = m1*r1*g.*cos(q1 d) + me.*g.*(re.*cos(q1 d+q2 d) + L1.*cos(q1 d));

188 G2 d = me.*g.*re.*cos(q1 d+q2 d);

189 for i=1:length(q1)

190 H d(:,:,i) = [H11 d(i) H12 d(i); H21 d(i) H22 d(i)];

191 C d(:,:,i) = [−h d(i)*dq2 d(i) −h d(i)*(dq1 d(i)+dq2 d(i)); ...

h d(i)*dq1 d(i) 0];

192 end

193 G d = [G1 d';G2 d'];

194

195 % Calculate PD control

196 for i = 1:length(q1)

197 % The Full Control Law: PD control with Feedforward

198 tau(:,i) = −K p*qtilde(:,i)−K v*qtilde dot(:,i)+ H d(:,:,i)*[ddq1 d(i); ...

ddq2 d(i)]+C d(:,:,i)*[dq1 d(i); dq2 d(i)]+G d(:,i);

199 end

200

201 end

Feedback Linearization

1 %% Feedback Linearization Control

2 % Aug 2018

3 % Control law assumes exact knowledge of M,C,G matrices

4 clc; clear all; close all

137

www.manaraa.com

5

6 %% INPUTS

7 % Set mass properties

8 twoDof A massProperties % run the file

9

10 % Set simulation time span

11 t0 = 0; tf = 0.75; tspan = [t0 tf];

12

13 % Set input method (see twoDof DesiredTrajectories.m)

14 param.inputMethod =3; % 2 is step, 3 is sinusoid

15

16 % Define initial conditions for states (starts at q1 d)

17 if param.inputMethod ==3

18 q10 = 0.9405; dq10 = 0; q20 = −1.7660; dq20 = 0; % for sinusoid

19 elseif param.inputMethod ==2

20 q10 = 0; dq10 = 0; q20 = 0; dq20 = 0; % for step

21 end

22 X0 = [q10; dq10; q20; dq20];

23

24 % Set properties specific to the control law

25 lam = 100; param.lam = lam;

26

27 % Do the simulation

28 options = []; [t,X] = ode45(@feedbackLinController, tspan, X0, options, ...

param);

29 q1 = X(:,1); dq1 = X(:,2); q2 = X(:,3); dq2 = X(:,4);

30 % calculate control

31 [q1 d ,q2 d,dq1 d,dq2 d,qtilde, qtilde dot, tau] = ...

feedbackLinControl(t,X,param);

32

33 %% Plots

34 figure (1) % STATES

35 subplot(411)

36 plot(t,rad2deg(q1),t,rad2deg(q1 d),'−−');legend('True','desired')
37 ylabel('$q 1 (deg)$'); grid minor;xlim([0 0.75])

38 %title(['FBL Control: λ=',num2str(lam)])
39 subplot(412)

40 plot(t,rad2deg(q2),t,rad2deg(q2 d),'−−')%;legend('True','desired')
41 ylabel('$q 2 (deg)$'); grid minor;xlim([0 0.75])

42 subplot(413)

43 plot(t,rad2deg(dq1),t,rad2deg(dq1 d),'−−')%;legend('True','desired')
44 ylabel('$\dot{q} 1$ (deg/s)'); grid minor;xlim([0 0.75])

45 subplot(414)

46 plot(t,rad2deg(dq2),t,rad2deg(dq2 d),'−−')%;legend('True','desired')
47 xlabel('time (s)');

48 ylabel('$\dot{q} 2$ (deg/s)'); grid minor;xlim([0 0.75])

49 %saveas(gcf,'FBLstates.png')

138

www.manaraa.com

50

51 figure () % ERROR AND CONTROL

52 subplot(2,2,1)

53 plot(t,rad2deg(qtilde(1,:)),t,rad2deg(qtilde(2,:)))

54 legend('$\tilde{q} 1$','$\tilde{q} 2$');xlim([0 0.75])

55 ylabel('$q i$ Error (deg)');xlabel('time (s)');grid minor

56 %title(['FBL Control: $$\lambda$$=',num2str(lam)])
57 subplot(2,2,2)

58 plot(t,rad2deg(qtilde dot(1,:)),t,rad2deg(qtilde dot(2,:)))

59 legend('$\dot{\tilde{q}} 1$','$\dot{\tilde{q}} 2$');xlim([0 0.75])

60 ylabel('$\dot{q} i$ Error (deg/s)');xlabel('time (s)');grid minor

61 subplot(2,2,3)

62 plot(t,squeeze(tau(1,:,:)),t,squeeze(tau(2,:,:)))

63 legend('$\tau 1$','$\tau 2$');xlim([0 0.75])

64 xlabel('time (s)'); ylabel('$\tau i (N−m)$');grid minor

65 subplot(2,2,4)

66 plot(rad2deg(qtilde(1,:)),rad2deg(qtilde dot(1,:)),...

67 rad2deg(qtilde(2,:)),rad2deg(qtilde dot(2,:)));

68 %title(['\lambda=', num2str(lam),', \eta 1=', num2str(eta1)])

69 xlabel('$\tilde{q} i (deg)$')

70 ylabel('$\dot{\tilde{q}} i (deg/s)$')

71 legend('Joint 1','Joint 2');grid minor

72 %saveas(gcf,'FBLerror.png')

73 twoDof CompareTraj

74 %% animate

75 % z = [q1'; dq1'; q2'; dq2']; % actual states

76 % A.plotFunc = @(t,z)(drawRobot(t,z,param));

77 % A.speed = 0.25;

78 % A.figNum = 101;

79 % animate(t,z,A)

80 %% The Function

81 function xdot= feedbackLinController(t,X,param)

82 % unpack X = [q1;dq1;q2;dq2]=[q1; dq1; q2; dq2]

83 q1 = X(1); dq1 = X(2); q2 = X(3); dq2 = X(4);

84

85 % define parameters

86 g = param.g;

87 m1 = param.m1; me = param.me; % e means link 2 + whatever it's holding

88 L1 = param.L1; delE = param.delE;

89 r1 = param.r1; re = param.re;

90 I1 = param.I1; Ie = param.Ie;

91 lam = param.lam;

92 me = eval(me); % evaluate the time−changing parameters

93 re = eval(re);

94 Ie = eval(Ie);

95 delE = eval(delE);

96

139

www.manaraa.com

97 % define true parameters

98 a1 = I1+m1*r1ˆ2+Ie+me*reˆ2+me*L1ˆ2;

99 a2 = Ie+me*reˆ2;

100 a3 = me*L1*re*cos(delE);

101 a4 = me*L1*re*sin(delE);

102

103 % define coefficient matrices

104 H11 = a1+2*a3*cos(q2)+2*a4*sin(q2);

105 H22 = a2;

106 H12 = a2+a3*cos(q2)+a4*sin(q2);

107 H21 = H12;

108 h = a3*sin(q2)−a4*cos(q2);
109 G1 = m1*r1*g*cos(q1) + me*g*(re*cos(q1+q2) + L1*cos(q1)); % gravity terms

110 G2 = me*g*re*cos(q1+q2);

111 H mat = [H11 H12; H21 H22];

112 c mat = [−h*dq2 −h*(dq1+dq2); h*dq1 0];

113

114 % Desired trajectories

115 [q1 d,dq1 d,ddq1 d,q2 d,dq2 d,ddq2 d]=twoDof DesiredTrajectories(t,param);

116

117 qtilde = [q1−q1 d; q2−q2 d];

118 qtilde dot = [dq1−dq1 d; dq2−dq2 d];

119

120 v = [ddq1 d;ddq2 d]−2*lam*qtilde dot−lamˆ2*qtilde;
121

122 % Calculate control law (torque)

123 tau =H mat*v+c mat*[dq1; dq2]+[G1;G2];

124

125 % Calculate True Response

126 ddQ=inv(H mat)*(tau−c mat*[dq1; dq2]−[G1;G2]);
127 ddq1 = ddQ(1);

128 ddq2 = ddQ(2);

129

130

131 xdot = [dq1; ddq1; dq2; ddq2];

132 end

133

134 %% want to get control as output

135 function [q1 d ,q2 d,dq1 d,dq2 d,qtilde, qtilde dot, tau] = ...

feedbackLinControl(t,X,param)

136 % unpack X = [q1;dq1;q2;dq2]=[q1; dq1; q2; dq2]

137 q1 = X(:,1); dq1 = X(:,2); q2 = X(:,3); dq2 = X(:,4);

138

139 % define parameters

140 g = param.g;

141 m1 = param.m1; me = param.me; % e means link 2 + whatever it's holding

142 L1 = param.L1; delE = param.delE;

140

www.manaraa.com

143 r1 = param.r1; re = param.re;

144 I1 = param.I1; Ie = param.Ie;

145 lam = param.lam;

146 me = eval(me); % evaluate the time−changing parameters

147 re = eval(re);

148 Ie = eval(Ie);

149 delE = eval(delE);

150

151 % define true parameters

152 a1 = I1+m1*r1ˆ2+Ie+me.*re.ˆ2+me.*L1ˆ2;

153 a2 = Ie+me.*re.ˆ2;

154 a3 = me.*L1.*re.*cos(delE);

155 a4 = me.*L1.*re.*sin(delE);

156

157 % define coefficient matrices

158 H11 = a1+2*a3.*cos(q2)+2*a4.*sin(q2);

159 H22 = a2;

160 H12 = a2+a3.*cos(q2)+a4.*sin(q2);

161 H21 = H12;

162 h = a3.*sin(q2)−a4.*cos(q2);
163 G1 = m1*r1*g*cos(q1) + me*g.*(re.*cos(q1+q2) + L1.*cos(q1)); % gravity

164 G2 = me.*g.*re.*cos(q1+q2);

165 for i=1:length(H11)

166 H mat(:,:,i) = [H11(i) H12(i); H21(i) H22(i)];

167 c mat(:,:,i) = [−h(i)*dq2(i) −h(i)*(dq1(i)+dq2(i)); h(i)*dq1(i) 0];

168 end

169

170 % Desired trajectories

171 [q1 d,dq1 d,ddq1 d,q2 d,dq2 d,ddq2 d]=twoDof DesiredTrajectories(t,param);

172 qtilde = [q1−q1 d, q2−q2 d]';

173 qtilde dot = [dq1−dq1 d, dq2−dq2 d]';

174

175 v = [ddq1 d,ddq2 d]'−2*lam*qtilde dot−lamˆ2*qtilde;
176

177 % Calculate control law (torque)

178

179 for i = 1:length(dq1)

180 tau(:,:,i) =H mat(:,:,i)*v(:,i)+c mat(:,:,i)*[dq1(i); dq2(i)]+[G1(i);G2(i)];

181 end

182

183 end

Sliding Mode Controller

1 %% Sliding Mode Control

2 % Sep 2018

3 % Control law assumes exact knowledge of dynamics structure

141

www.manaraa.com

4 clc; clear all; %close all

5

6 %% INPUTS

7 % Set mass properties

8 twoDof A massProperties % run the file

9

10 % Set simulation time span

11 t0 = 0; tf = 3; tspan = [t0 tf];

12

13 % Set input method (see twoDof DesiredTrajectories.m)

14 param.inputMethod =3; % 2 is step, 3 is sinusoid

15

16 % Define initial conditions for states (starts at q1 d)

17 if param.inputMethod ==3

18 q10 = 0.9405; dq10 = 0; q20 = −1.7660; dq20 = 0; % for sinusoid

19 elseif param.inputMethod ==2

20 q10 = 0; dq10 = 0; q20 = 0; dq20 = 0; % for step

21 end

22 X0 = [q10; dq10; q20; dq20];

23

24 % Set properties specific to the control law

25 lam = 20; param.lam = lam;

26 eta1 = 0.1; param.eta1 = eta1;

27 eta2 = 0.1; param.eta2 = eta2;

28 mInacc = 1.05; param.mInacc = mInacc; % percent inaccuracy on mass ...

parameters (estimated are 120%)

29 phi1 = 0.05; param.phi1 = phi1; % boundary layer thickness

30 phi2 = 0.05; param.phi2 = phi2;

31

32 options = []; [t,X] = ode45(@slideModeController, tspan, X0, options, param);

33 q1 = X(:,1); dq1 = X(:,2); q2 = X(:,3); dq2 = X(:,4);

34 % % Calculate control

35 [q1 d ,q2 d,dq1 d,dq2 d,qtilde, qtilde dot, tau,s,a rlz,ahat] = ...

slideModeControl(t,X,param);

36 q1tilde = qtilde(1,:); q2tilde = qtilde(2,:);

37 a1=a rlz(:,1); a2=a rlz(:,2); a3=a rlz(:,3); a4=a rlz(:,4);

38 a1hat=ahat(:,1); a2hat=ahat(:,2); a3hat=ahat(:,3); a4hat=ahat(:,4);

39

40 %% Plots

41

42 figure (1) % STATES

43 subplot(411)

44 plot(t,rad2deg(q1),t,rad2deg(q1 d),'−−');legend('True','desired')
45 ylabel('$q 1 (deg)$'); grid minor

46 %title(['SMC: λ=',num2str(lam),', $\eta 1$=',num2str(eta1),', ...

$\eta 2$=',num2str(eta2),', constant ϕ'])
47 subplot(412)

142

www.manaraa.com

48 plot(t,rad2deg(q2),t,rad2deg(q2 d),'−−')%;legend('True','desired')
49 ylabel('$q 2 (deg)$'); grid minor

50 subplot(413)

51 plot(t,rad2deg(dq1),t,rad2deg(dq1 d),'−−')%;legend('True','desired')
52 ylabel('$\dot{q} 1$ (deg/s)'); grid minor

53 subplot(414)

54 plot(t,rad2deg(dq2),t,rad2deg(dq2 d),'−−')%;legend('True','desired')
55 xlabel('time (s)');

56 ylabel('$\dot{q} 2$ (deg/s)'); grid minor

57 %saveas(gcf,'SMCstates.png')

58

59 figure (2) % ERROR

60 subplot(2,2,1)

61 plot(t,rad2deg(qtilde(1,:)),t,rad2deg(qtilde(2,:)))

62 legend('$\tilde{q} 1$','$\tilde{q} 2$')

63 ylabel('$q i$ Error (deg)');xlabel('time (s)');grid minor

64 %title(['SMC: λ=',num2str(lam),'$, \eta 1$=',num2str(eta1),'$, ...

\eta 2$=',num2str(eta2)])

65 subplot(2,2,2)

66 plot(t,rad2deg(qtilde dot(1,:)),t,rad2deg(qtilde dot(2,:)))

67 legend('$\dot{\tilde{q}} 1$','$\dot{\tilde{q}} 2$')

68 ylabel('$\dot{q} i$ Error (deg/s)');xlabel('time (s)');grid minor

69 subplot(2,2,3)

70 plot(t,squeeze(tau(1,:,:)),t,squeeze(tau(2,:,:)))

71 legend('$\tau 1$','$\tau 2$')

72 xlabel('time (s)'); ylabel('$\tau i (N−m)$');grid minor

73 subplot(2,2,4)

74 plot(rad2deg(q1tilde),rad2deg(dq1−dq1 d),...

75 rad2deg(q2tilde),rad2deg(dq2−dq2 d));

76 %title(['\lambda=', num2str(lam),', \eta 1=', num2str(eta1)])

77 xlabel('$\tilde{q} i (deg)$');

78 ylabel('$\dot{\tilde{q}} i (deg/s)$')

79 legend('Joint 1','Joint 2');grid minor

80 %saveas(gcf,'SMCerror.png')

81

82 figure (3) % SLIDING SURFACE & BOUNDARY LAYER

83 subplot(2,1,1)

84 plot(t,s);

85 ylabel('$s(t)$'); legend('$$s 1$$','$$s 2$$');grid minor

86 %title('Sliding Surface')

87 subplot(2,1,2)

88 plot(t,phi1*ones(length(t)),t,phi2*ones(length(t)),':')

89 xlabel('t(sec)'); ylabel('ϕ');
90 legend('$$\phi 1$$','$$\phi 2$$');grid minor

91 %title('Constant Boundary Layer')

92 %saveas(gcf,'SMCsurface.png')

93

143

www.manaraa.com

94 figure (4) % PARAMETERS

95 subplot(221)

96 plot(t,a1,t,a1hat)

97 legend('$$a 1 \ true$$','$$\hat{a} 1$$')

98 xlabel('time (s)'); grid minor;

99 %title('Inaccuracy in Parameters')

100 subplot(222)

101 plot(t,a2,t,a2hat)

102 legend('$$a 2 \ true$$','$$\hat{a} 2$$')

103 xlabel('time (s)'); grid minor

104 subplot(223)

105 plot(t,a3,t,a3hat)

106 legend('$$a 3 \ true$$','$$\hat{a} 3$$')

107 xlabel('time (s)'); grid minor

108 subplot(224)

109 plot(t,a4,t,a4hat)

110 legend('$$a 4 \ true$$','$$\hat{a} 4$$')

111 xlabel('time (s)'); grid minor

112 %saveas(gcf,'SMCwTVBLparam.png')

113

114 %% animate

115 % z = [q1'; dq1'; q2'; dq2']; % actual states

116 % A.plotFunc = @(t,z)(drawRobot(t,z,param));

117 % A.speed = 0.25;

118 % A.figNum = 101;

119 % %animate(t,z,A)

120

121 %%

122 function xdot= slideModeController(t,X,param)

123 % unpack X = [q1;dq1;q2;dq2]=[q1; dq1; q2; dq2]

124 q1 = X(1); dq1 = X(2); q2 = X(3); dq2 = X(4);

125

126 % define parameters

127 g = param.g;

128 m1 = param.m1; me = param.me; % e means link 2 + whatever it's holding

129 L1 = param.L1; delE = param.delE;

130 r1 = param.r1; re = param.re;

131 I1 = param.I1; Ie = param.Ie;

132 me = eval(me); % evaluate the time−changing parameters

133 re = eval(re);

134 Ie = eval(Ie);

135 delE = eval(delE);

136

137 lam = param.lam;

138 eta1 = param.eta1;

139 eta2 = param.eta2;

140 mInacc = param.mInacc;

144

www.manaraa.com

141 phi1 = param.phi1;

142 phi2 = param.phi2;

143

144 % define true parameters/coefficients

145 a1 = I1+m1*r1ˆ2+Ie+me*reˆ2+me*L1ˆ2;

146 a2 = Ie+me*reˆ2;

147 a3 = me*L1*re*cos(delE);

148 a4 = me*L1*re*sin(delE);

149 H11 = a1+2*a3*cos(q2)+2*a4*sin(q2);

150 H22 = a2;

151 H12 = a2+a3*cos(q2)+a4*sin(q2);

152 H21 = H12;

153 h = a3*sin(q2)−a4*cos(q2);
154 G1 = m1*r1*g*cos(q1) + me*g*(re*cos(q1+q2) + L1*cos(q1));

155 G2 = me*g*re*cos(q1+q2);

156 H mat = [H11 H12; H21 H22];

157 c mat = [−h*dq2 −h*(dq1+dq2); h*dq1 0];

158 g mat = [G1;G2];

159

160 % Estimated coefficient matrices

161 a1hat = mInacc*a1;

162 a2hat = mInacc*a2;

163 a3hat = mInacc*a3;

164 a4hat = mInacc*a4;

165 H11hat = a1hat+2*a3hat*cos(q2)+2*a4hat*sin(q2);

166 H22hat = a2hat;

167 H12hat = a2hat+a3hat*cos(q2)+a4hat*sin(q2);

168 H21hat = H12hat;

169 hhat = a3hat*sin(q2)−a4hat*cos(q2);
170 G1 hat = mInacc*(m1*r1*g*cos(q1) + me*g*(re*cos(q1+q2) + L1*cos(q1)));

171 G2 hat = mInacc*(me*g*re*cos(q1+q2));

172 H mathat = [H11hat H12hat; H21hat H22hat];

173 c mathat = [−hhat*dq2 −hhat*(dq1+dq2); hhat*dq1 0];

174 g mathat = [G1;G2];

175 % Coefficient Error Matrices

176 Htilde = H mathat−H mat;

177 ctilde = c mathat−c mat;

178 gtilde = g mathat−g mat;

179

180 % Desired trajectories

181 [q1 d,dq1 d,ddq1 d,q2 d,dq2 d,ddq2 d]=twoDof DesiredTrajectories(t,param);

182 qtilde = [q1−q1 d; q2−q2 d]; % position error

183 qtilde dot = [dq1−dq1 d; dq2−dq2 d]; % velocity error

184

185 % Calculate s (sliding surface)

186 s = qtilde dot +lam*qtilde;

187 s1 = s(1); s2 = s(2);

145

www.manaraa.com

188

189 % define reference velocities

190 dq r = [dq1 d;dq2 d]−lam*qtilde;
191 dq1 r = dq r(1); dq2 r = dq r(2);

192 ddq r = [ddq1 d;ddq2 d]−lam*qtilde dot;

193 ddq1 r = ddq r(1); ddq2 r = ddq r(2);

194

195 % Calculate control law (tau = tau hat−k*sign(s))
196 tau hat = H mathat*ddq r+c mathat*dq r+g mathat;

197 k = (abs(Htilde*ddq r+ctilde*dq r+gtilde)+[eta1;eta2])';

198 tau = tau hat−k*[sat(s1,phi1);sat(s2,phi2)];
199

200 % Calculate True Response

201 ddQ=inv(H mat)*(tau−c mat*[dq1; dq2]−g mat);

202 ddq1 = ddQ(1);

203 ddq2 = ddQ(2);

204

205

206 xdot = [dq1; ddq1; dq2; ddq2];

207 end

208

209 %% want to get control as output

210 function [q1 d ,q2 d,dq1 d,dq2 d,qtilde,qtilde dot,tau,s,a rlz,ahat] ...

=slideModeControl(t,X,param)

211 % unpack X = [q1;dq1;q2;dq2]=[q1; dq1; q2; dq2]

212 q1 = X(:,1); dq1 = X(:,2); q2 = X(:,3); dq2 = X(:,4);

213

214 % define parameters

215 g = param.g;

216 m1 = param.m1; me = param.me; % e means link 2 + whatever it's holding

217 L1 = param.L1; delE = param.delE;

218 r1 = param.r1; re = param.re;

219 I1 = param.I1; Ie = param.Ie;

220 me = eval(me); % evaluate the time−changing parameters

221 re = eval(re);

222 Ie = eval(Ie);

223 delE = eval(delE);

224

225 lam = param.lam;

226 eta1 = param.eta1;

227 eta2 = param.eta2;

228 mInacc = param.mInacc;

229 phi1 = param.phi1;

230 phi2 = param.phi2;

231

232 % define true parameters/coefficients

233 a1 = I1+m1*r1ˆ2+Ie+me.*re.ˆ2+me.*L1ˆ2;

146

www.manaraa.com

234 a2 = Ie+me.*re.ˆ2;

235 a3 = me.*L1.*re.*cos(delE);

236 a4 = me.*L1.*re.*sin(delE);

237 H11 = a1+2*a3.*cos(q2)+2*a4.*sin(q2);

238 H22 = a2;

239 H12 = a2+a3.*cos(q2)+a4.*sin(q2);

240 H21 = H12;

241 h = a3.*sin(q2)−a4.*cos(q2);
242 G1 = m1*r1*g.*cos(q1) + me.*g.*(re.*cos(q1+q2) + L1.*cos(q1));

243 G2 = me.*g.*re.*cos(q1+q2);

244 for i=1:length(H11)

245 H mat(:,:,i) = [H11(i) H12(i); H21(i) H22(i)];

246 c mat(:,:,i) = [−h(i)*dq2(i) −h(i)*(dq1(i)+dq2(i)); h(i)*dq1(i) 0];

247 g mat(:,:,i) = [G1(i);G2(i)];

248 end

249

250 % Estimated coefficient matrices

251 a1hat = mInacc*a1;

252 a2hat = mInacc*a2;

253 a3hat = mInacc*a3;

254 a4hat = mInacc*a4;

255 H11hat = a1hat+2*a3hat.*cos(q2)+2*a4hat.*sin(q2);

256 H22hat = a2hat;

257 H12hat = a2hat+a3hat.*cos(q2)+a4hat.*sin(q2);

258 H21hat = H12;

259 hhat = a3hat.*sin(q2)−a4hat.*cos(q2);
260 G1 hat = mInacc*(m1*r1*g.*cos(q1) + me.*g.*(re.*cos(q1+q2) + L1*cos(q1)));

261 G2 hat = mInacc*(me.*g.*re.*cos(q1+q2));

262 for i=1:length(H11hat)

263 H mathat(:,:,i) = [H11hat(i) H12hat(i); H21hat(i) H22hat(i)];

264 c mathat(:,:,i) = [−hhat(i)*dq2(i) −hhat(i)*(dq1(i)+dq2(i));...
265 hhat(i)*dq1(i) 0];

266 g mathat(:,:,i) = [G1 hat(i);G2 hat(i)];

267 end

268 % Coefficient errors

269 Htilde = H mathat−H mat;

270 ctilde = c mathat−c mat;

271 gtilde = g mathat−g mat;

272

273 % Desired trajectories

274 [q1 d,dq1 d,ddq1 d,q2 d,dq2 d,ddq2 d]=twoDof DesiredTrajectories(t,param);

275 qtilde = [q1−q1 d, q2−q2 d]';

276 qtilde dot = [dq1−dq1 d, dq2−dq2 d]';

277

278 % Calculate s (sliding surface)

279 for i=1:length(qtilde)

280 s(:,i)= qtilde dot(:,i)+lam.*qtilde(:,i);

147

www.manaraa.com

281 end

282 s1 = squeeze(s(1,:)); s2 = squeeze(s(2,:));

283

284 % Define dynamics matrix (Y)

285 dq r = [dq1 d,dq2 d]'−lam*qtilde; % reference velocity

286 dq1 r = dq r(1,:)'; dq2 r = dq r(2,:)';

287 ddq r = [ddq1 d,ddq2 d]'−lam*qtilde dot;

288 ddq1 r = ddq r(1,:)'; ddq2 r = ddq r(2,:)';

289

290

291 % Calculate control law (tau = tau hat−k*sign(s))
292 for i = 1:length(H mathat)

293 tau hat(:,:,i) = H mathat(:,:,i)*[ddq1 r(i); ...

ddq2 r(i)]+c mathat(:,:,i)*[dq1 r(i);dq2 r(i)]+g mathat(:,:,i);

294 k(:,:,i) = (abs(Htilde(:,:,i)*[ddq1 r(i); ...

ddq2 r(i)]+ctilde(:,:,i)*[dq1 r(i);dq2 r(i)]+gtilde(:,:,i))+[eta1;eta2])';

295 tau(:,:,i) = tau hat(:,:,i)−k(:,:,i)*[sat(s1(i),phi1);sat(s2(i),phi2)];
296 end

297

298 % For output to compare

299 a rlz=[a1, a2, a3, a4]; % real

300 ahat=[a1hat, a2hat, a3hat, a4hat]; % with inaccuracy

301 end

302

303 function y=sat(s,phi) % function from TimeVaringBLCode.m (Capt Hess)

304 % sat is the saturation function with unit limits and unit slope.

305 if abs(s)>phi

306 % elseif x<−∆

307 y=sign(s);

308 else y=s./phi;

309 end

310 end

Sliding Mode Controller, time-varying Boundary Layer

1 %% Sliding Mode WITH time−varying boundary layer

2 % Sep 2018

3 % Control law assumes exact knowledge of dynamics structure

4 clc; clear all; close all

5

6 %% INPUTS

7 % Set mass properties

8 twoDof A massProperties % run the file

9

10 % Set simulation time span

11 t0 = 0; tf = 3; tspan = [t0 tf];

12

148

www.manaraa.com

13 % Set input method (see twoDof DesiredTrajectories.m)

14 param.inputMethod =3; % 2 is step, 3 is sinusoid

15

16 % Define initial conditions for states (starts at q1 d)

17 if param.inputMethod ==3

18 q10 = 0.9405; dq10 = 0; q20 = −1.7660; dq20 = 0; % for sinusoid

19 elseif param.inputMethod ==2

20 q10 = 0; dq10 = 0; q20 = 0; dq20 = 0; % for step

21 end

22 X0 = [q10; dq10; q20; dq20; 0.05; 0.05]; % phi1,phi2

23

24 % Set properties specific to the control law

25 lam = 20; param.lam = lam;

26 eta1 = 0.1; param.eta1 = eta1;

27 eta2 = 0.1; param.eta2 = eta2;

28 mInacc = 1.01; param.mInacc = mInacc; % percent inaccuracy on mass ...

parameters (estimated are 120%)

29

30 options = []; [t,X] = ode45(@slideModeBVController, tspan, X0, options, ...

param);

31 q1 = X(:,1); dq1 = X(:,2); q2 = X(:,3); dq2 = X(:,4);

32 phi1 = X(:,5); phi2 = X(:,6);

33

34 [q1 d ,q2 d,dq1 d,dq2 d,qtilde, qtilde dot, tau,s,a rlz,ahat] = ...

slideModeBVControl(t,X,param);

35 q1tilde = qtilde(1,:); q2tilde = qtilde(2,:); s=squeeze(s);

36 a1=a rlz(:,1); a2=a rlz(:,2); a3=a rlz(:,3); a4=a rlz(:,4);

37 a1hat=ahat(:,1); a2hat=ahat(:,2); a3hat=ahat(:,3); a4hat=ahat(:,4);

38

39 %% Plots

40

41 figure (1) % STATES

42 subplot(411)

43 plot(t,rad2deg(q1),t,rad2deg(q1 d),'−−');legend('True','desired')
44 ylabel('$q 1 (deg)$'); grid minor

45 %title(['SMC: λ=',num2str(lam),', $\eta 1$=',num2str(eta1),', ...

$\eta 2$=',num2str(eta2),', Varying ϕ'])
46 subplot(412)

47 plot(t,rad2deg(q2),t,rad2deg(q2 d),'−−')%;legend('True','desired')
48 ylabel('$q 2 (deg)$'); grid minor

49 subplot(413)

50 plot(t,rad2deg(dq1),t,rad2deg(dq1 d),'−−')%;legend('True','desired')
51 ylabel('$\dot{q} 1$ (deg/s)'); grid minor

52 subplot(414)

53 plot(t,rad2deg(dq2),t,rad2deg(dq2 d),'−−')%;legend('True','desired')
54 xlabel('time (s)');

55 ylabel('$\dot{q} 2$ (deg/s)'); grid minor

149

www.manaraa.com

56 %saveas(gcf,'SMCwTVBLstates.png')

57

58 figure (2) % ERROR

59 subplot(2,2,1)

60 plot(t,rad2deg(qtilde(1,:)),t,rad2deg(qtilde(2,:)))

61 legend('$\tilde{q} 1$','$\tilde{q} 2$')

62 ylabel('$q i$ Error (deg)');xlabel('time (s)');grid minor

63 %title(['SMC: λ=',num2str(lam),'$, \eta 1$=',num2str(eta1),'$, ...

\eta 2$=',num2str(eta2)])

64 subplot(2,2,2)

65 plot(t,rad2deg(qtilde dot(1,:)),t,rad2deg(qtilde dot(2,:)))

66 legend('$\dot{\tilde{q}} 1$','$\dot{\tilde{q}} 2$')

67 ylabel('$\dot{q} i$ Error (deg/s)');xlabel('time (s)');grid minor

68 subplot(2,2,3)

69 plot(t,squeeze(tau(1,:,:)),t,squeeze(tau(2,:,:)))

70 legend('$\tau 1$','$\tau 2$')

71 xlabel('time (s)'); ylabel('$\tau i (N−m)$');grid minor

72 subplot(2,2,4)

73 plot(rad2deg(q1tilde),rad2deg(dq1−dq1 d),...

74 rad2deg(q2tilde),rad2deg(dq2−dq2 d));

75 %title(['\lambda=', num2str(lam),', \eta 1=', num2str(eta1)])

76 xlabel('$\tilde{q} i (deg)$');

77 ylabel('$\dot{\tilde{q}} i (deg/s)$')

78 legend('Joint 1','Joint 2');grid minor

79 %saveas(gcf,'SMCwTVBLerror.png')

80

81 figure (3) % SLIDING SURFACE & BOUNDARY LAYER

82 subplot(2,1,1)

83 plot(t,s);

84 xlabel('t(sec)'); ylabel('$s(t)$');

85 legend('$$s 1$$','$$s 2$$');grid minor

86 %title('Sliding Surface')

87 subplot(2,1,2)

88 plot(t,phi1,t,phi2,':')

89 xlabel('t(sec)'); ylabel('ϕ');
90 legend('$$\phi 1$$','$$\phi 2$$');grid minor

91 %title('Time−Varying Boundary Layer')

92 %saveas(gcf,'SMCwTVBLsurface.png')

93

94 figure (4) % PARAMETERS

95 subplot(221)

96 plot(t,a1,t,a1hat)

97 legend('$$a 1 \ true$$','$$\hat{a} 1$$')

98 xlabel('time (s)'); grid minor;

99 %title('Inaccuracy in Parameters')

100 subplot(222)

101 plot(t,a2,t,a2hat)

150

www.manaraa.com

102 legend('$$a 2 \ true$$','$$\hat{a} 2$$')

103 xlabel('time (s)'); grid minor

104 subplot(223)

105 plot(t,a3,t,a3hat)

106 legend('$$a 3 \ true$$','$$\hat{a} 3$$')

107 xlabel('time (s)'); grid minor

108 subplot(224)

109 plot(t,a4,t,a4hat)

110 legend('$$a 4 \ true$$','$$\hat{a} 4$$')

111 xlabel('time (s)'); grid minor

112 %saveas(gcf,'SMCwTVBLparam.png')

113

114 %% animate

115 % z = [q1'; dq1'; q2'; dq2']; % actual states

116 % A.plotFunc = @(t,z)(drawRobot(t,z,param));

117 % A.speed = 0.25;

118 % A.figNum = 101;

119 % %animate(t,z,A)

120 %%

121 function xdot= slideModeBVController(t,X,param)

122 % unpack X = [q1;dq1;q2;dq2]=[q1; dq1; q2; dq2]

123 q1 = X(1); dq1 = X(2); q2 = X(3); dq2 = X(4);

124 phi1 = X(5); phi2 = X(6);

125

126 % define parameters

127 g = param.g;

128 m1 = param.m1; me = param.me; % e means link 2 + whatever it's holding

129 L1 = param.L1; delE = param.delE;

130 r1 = param.r1; re = param.re;

131 I1 = param.I1; Ie = param.Ie;

132 me = eval(me); % evaluate the time−changing parameters

133 re = eval(re);

134 Ie = eval(Ie);

135 delE = eval(delE);

136

137 lam = param.lam;

138 eta1 = param.eta1;

139 eta2 = param.eta2;

140 mInacc = param.mInacc;

141

142

143 % define true parameters

144 a1 = I1+m1*r1ˆ2+Ie+me*reˆ2+me*L1ˆ2;

145 a2 = Ie+me*reˆ2;

146 a3 = me*L1*re*cos(delE);

147 a4 = me*L1*re*sin(delE);

148

151

www.manaraa.com

149 % True coefficient matrices

150 H11 = a1+2*a3*cos(q2)+2*a4*sin(q2);

151 H22 = a2;

152 H12 = a2+a3*cos(q2)+a4*sin(q2);

153 H21 = H12;

154 h = a3*sin(q2)−a4*cos(q2);
155 G1 = m1*r1*g*cos(q1) + me*g*(re*cos(q1+q2) + L1*cos(q1));

156 G2 = me*g*re*cos(q1+q2);

157 H mat = [H11 H12; H21 H22];

158 c mat = [−h*dq2 −h*(dq1+dq2); h*dq1 0];

159 g mat = [G1;G2];

160

161 % Estimated coefficient matrices

162 a1hat = mInacc*a1;

163 a2hat = mInacc*a2;

164 a3hat = mInacc*a3;

165 a4hat = mInacc*a4;

166 H11hat = a1hat+2*a3hat*cos(q2)+2*a4hat*sin(q2);

167 H22hat = a2hat;

168 H12hat = a2hat+a3hat*cos(q2)+a4hat*sin(q2);

169 H21hat = H12hat;

170 hhat = a3hat*sin(q2)−a4hat*cos(q2);
171 G1 hat = 1.2ˆ(2)*m1*r1*g*cos(q1) + 1.2*me*g*(1.2*re*cos(q1+q2) + ...

1.2*L1*cos(q1));

172 G2 hat = 1.2ˆ(2)*me*g*re*cos(q1+q2);

173 H mathat = [H11hat H12hat; H21hat H22hat];

174 c mathat = [−hhat*dq2 −hhat*(dq1+dq2); hhat*dq1 0];

175 g mathat = [G1 hat;G2 hat];

176 % Coefficient errors

177 Htilde = H mathat−H mat;

178 ctilde = c mathat−c mat;

179 gtilde = g mathat−g mat;

180

181 % Desired trajectories

182 [q1 d,dq1 d,ddq1 d,q2 d,dq2 d,ddq2 d]=twoDof DesiredTrajectories(t,param);

183 qtilde = [q1−q1 d; q2−q2 d]; % positions

184 qtilde dot = [dq1−dq1 d; dq2−dq2 d]; % derivatives

185

186 % Calculate s (sliding surface)

187 s = qtilde dot +lam*qtilde;

188 s1 = s(1); s2 = s(2);

189

190 % define reference velocities

191 dq r = [dq1 d;dq2 d]−lam*qtilde;
192 dq1 r = dq r(1); dq2 r = dq r(2);

193 ddq r = [ddq1 d;ddq2 d]−lam*qtilde dot;

194 ddq1 r = ddq r(1); ddq2 r = ddq r(2);

152

www.manaraa.com

195

196 % Calculate control law (tau = tau hat−k*sign(s))
197 tau hat = H mathat*[ddq1 r; ddq2 r]+c mathat*[dq1 r;dq2 r]+g mathat;

198 k = (abs(Htilde*[ddq1 r; ddq2 r]+ctilde*[dq1 r;dq2 r])+[eta1;eta2])';

199 k xd=abs(Htilde*[ddq1 d; ddq2 d]+ctilde*[dq1 d;dq2 d])+[eta1;eta2];

200 % k(xd)

201 phidot = −lam.*[phi1;phi2]+ k xd; % time varying boundary layer

202 kbar= k − phidot;

203 tau = tau hat−kbar*[sat(s1,phi1);sat(s2,phi2)];
204

205 % Calculate True Response

206 ddQ=inv(H mat)*(tau−c mat*[dq1; dq2]−g mat);

207 ddq1 = ddQ(1);

208 ddq2 = ddQ(2);

209

210 xdot = [dq1; ddq1; dq2; ddq2; phidot];

211 end

212

213 %% want to get control as output

214 function [q1 d ,q2 d,dq1 d,dq2 d,qtilde,qtilde dot,tau,s,a rlz,ahat] ...

=slideModeBVControl(t,X,param)

215 % unpack X = [q1;dq1;q2;dq2]=[q1; dq1; q2; dq2]

216 q1 = X(:,1); dq1 = X(:,2); q2 = X(:,3); dq2 = X(:,4);

217 phi1 = X(5); phi2 = X(6);

218

219 % define parameters

220 g = param.g;

221 m1 = param.m1; me = param.me; % e means link 2 + whatever it's holding

222 L1 = param.L1; delE = param.delE;

223 r1 = param.r1; re = param.re;

224 I1 = param.I1; Ie = param.Ie;

225 me = eval(me); % evaluate the time−changing parameters

226 re = eval(re);

227 Ie = eval(Ie);

228 delE = eval(delE);

229

230 lam = param.lam;

231 eta1 = param.eta1;

232 eta2 = param.eta2;

233 mInacc = param.mInacc;

234

235 % define true parameters

236 a1 = I1+m1*r1ˆ2+Ie+me.*re.ˆ2+me.*L1ˆ2;

237 a2 = Ie+me.*re.ˆ2;

238 a3 = me.*L1.*re.*cos(delE);

239 a4 = me.*L1.*re.*sin(delE);

240 % define coefficient matrices

153

www.manaraa.com

241 H11 = a1+2*a3.*cos(q2)+2*a4.*sin(q2);

242 H22 = a2;

243 H12 = a2+a3.*cos(q2)+a4.*sin(q2);

244 H21 = H12;

245 h = a3.*sin(q2)−a4.*cos(q2);
246 G1 = m1*r1*g.*cos(q1) + me.*g.*(re.*cos(q1+q2) + L1.*cos(q1));

247 G2 = me.*g.*re.*cos(q1+q2);

248 for i=1:length(H11)

249 H mat(:,:,i) = [H11(i) H12(i); H21(i) H22(i)];

250 c mat(:,:,i) = [−h(i)*dq2(i) −h(i)*(dq1(i)+dq2(i)); h(i)*dq1(i) 0];

251 g mat(:,:,i) = [G1(i);G2(i)];

252 end

253

254 % Estimated coefficient matrices

255 a1hat = mInacc*a1;

256 a2hat = mInacc*a2;

257 a3hat = mInacc*a3;

258 a4hat = mInacc*a4;

259 H11hat = a1hat+2*a3hat.*cos(q2)+2*a4hat.*sin(q2);

260 H22hat = a2hat;

261 H12hat = a2hat+a3hat.*cos(q2)+a4hat.*sin(q2);

262 H21hat = H12;

263 hhat = a3hat.*sin(q2)−a4hat.*cos(q2);
264 G1 hat = mInacc*(m1*r1*g.*cos(q1) + me.*g.*(re.*cos(q1+q2) + L1*cos(q1)));

265 G2 hat = mInacc*(me.*g.*re.*cos(q1+q2));

266 for i=1:length(H11hat)

267 H mathat(:,:,i) = [H11hat(i) H12hat(i); H21hat(i) H22hat(i)];

268 c mathat(:,:,i) = [−hhat(i)*dq2(i) −hhat(i)*(dq1(i)+dq2(i));...
269 hhat(i)*dq1(i) 0];

270 g mathat(:,:,i) = [G1 hat(i);G2 hat(i)];

271 end

272 % Coefficient errors

273 Htilde = H mathat−H mat;

274 ctilde = c mathat−c mat;

275 gtilde = g mathat−g mat;

276

277 % Desired trajectories

278 [q1 d,dq1 d,ddq1 d,q2 d,dq2 d,ddq2 d]=twoDof DesiredTrajectories(t,param);

279 qtilde = [q1−q1 d, q2−q2 d]';

280 qtilde dot = [dq1−dq1 d, dq2−dq2 d]';

281

282 % Calculate s (sliding surface)

283 for i=1:length(qtilde)

284 s(:,:,i)= qtilde dot(:,i)+lam.*qtilde(:,i);

285 end

286 s1 = s(1,1,:); s2 = s(2,1,:);

287

154

www.manaraa.com

288 % Define dynamics matrix (Y)

289 dq r = [dq1 d,dq2 d]'−lam*qtilde; % reference velocity

290 dq1 r = dq r(1,:)'; dq2 r = dq r(2,:)';

291 ddq r = [ddq1 d,ddq2 d]'−lam*qtilde dot;

292 ddq1 r = ddq r(1,:)'; ddq2 r = ddq r(2,:)';

293

294

295 % Calculate control law (tau = tau hat−k*sign(s))
296 for i = 1:length(H mathat)

297 tau hat(:,:,i) = H mathat(:,:,i)*[ddq1 r(i); ...

ddq2 r(i)]+c mathat(:,:,i)*[dq1 r(i);dq2 r(i)]+g mathat(:,:,i);

298 k(:,:,i) = (abs(Htilde(:,:,i)*[ddq1 r(i); ...

ddq2 r(i)]+ctilde(:,:,i)*[dq1 r(i);dq2 r(i)])+[eta1;eta2])';

299 k xd(:,:,i)=abs(Htilde(:,:,i)*[ddq1 d(i); ...

ddq2 d(i)]+ctilde(:,:,i)*[dq1 d(i);dq2 d(i)])+[eta1;eta2]; % k(xd)

300 phidot(:,:,i) = −lam.*[phi1;phi2]+ k xd(:,:,i); % time varying boundary layer

301 kbar(:,:,i)= k(:,:,i) − phidot(:,:,i);

302 tau(:,:,i) = tau hat(:,:,i)−kbar(:,:,i)*[sat(s1(:,:,i),phi1);...
303 sat(s2(:,:,i),phi2)];

304 end

305

306 % For output to compare

307 a rlz=[a1, a2, a3, a4]; % real

308 ahat=[a1hat, a2hat, a3hat, a4hat];% with inaccuracy

309

310 end

311

312 function y=sat(s,phi) % function from TimeVaringBLCode.m (Capt Hess)

313 % sat is the saturation function with unit limits and unit slope.

314 if abs(s)>phi

315 % elseif x<−∆

316 y=sign(s);

317 else y=s./phi;

318 end

319 end

Adaptive Controller

1 %% Adaptive Control

2 % Oct 2018

3 % Control law assumes exact knowledge of dynamics structure

4 % IDK how to account for gravity − unknown parameters are not linear wrt

5 % dynamics when gravity is included

6 clc; clear all; %close all

7

8 %% INPUTS

9 % Set mass properties

155

www.manaraa.com

10 twoDof A massProperties % run the file

11

12 % Set simulation time span

13 t0 = 0; tf = 3; tspan = [t0 tf];

14

15 % Set input method (see twoDof DesiredTrajectories.m)

16 param.inputMethod =3; % 2 is step, 3 is sinusoid

17

18 % Define initial conditions for states (starts at q1 d)

19 if param.inputMethod ==3

20 q10 = 0.9405; dq10 = 0; q20 = −1.7660; dq20 = 0; % for sinusoid

21 elseif param.inputMethod ==2

22 q10 = 0; dq10 = 0; q20 = 0; dq20 = 0; % for step

23 end

24 X0 = [q10; dq10; q20; dq20; 0;0;0;0]; % last 4 are for ahat

25

26 % Set properties specific to the control law

27 K d = 100*eye(2); param.K d = K d;

28 lam = 20; param.lam = lam;

29 Gamma = diag([13.5 0.2 0.6 0.01]); param.Gamma = Gamma;

30

31 options = [];

32 [t,X] = ode45(@AdaptiveController, tspan, X0, options, param);

33 q1 = X(:,1); dq1 = X(:,2); q2 = X(:,3); dq2 = X(:,4);

34

35 [q1 d ,q2 d,dq1 d,dq2 d,qtilde, qtilde dot, tau,s,a rlz,ahat] = ...

AdaptiveControl(t,X,param);

36 q1tilde = qtilde(1,:); q2tilde = qtilde(2,:); s=squeeze(s);

37 a1=a rlz(:,1); a2=a rlz(:,2); a3=a rlz(:,3); a4=a rlz(:,4);

38 a1hat=ahat(:,1); a2hat=ahat(:,2); a3hat=ahat(:,3); a4hat=ahat(:,4);

39

40 %% Plots

41 figure (1) % STATES

42 subplot(411)

43 plot(t,rad2deg(q1),t,rad2deg(q1 d),'−−');legend('True','desired')
44 ylabel('$q 1 (deg)$'); grid minor

45 %title(['MRAC: λ=',num2str(lam),'$\ K D$=',num2str(K d(1))])

46 subplot(412)

47 plot(t,rad2deg(q2),t,rad2deg(q2 d),'−−')%;legend('True','desired')
48 ylabel('$q 2 (deg)$'); grid minor

49 subplot(413)

50 plot(t,rad2deg(dq1),t,rad2deg(dq1 d),'−−')%;legend('True','desired')
51 ylabel('$\dot{q} 1$ (deg/s)'); grid minor

52 subplot(414)

53 plot(t,rad2deg(dq2),t,rad2deg(dq2 d),'−−')%;legend('True','desired')
54 xlabel('time (s)');

55 ylabel('$\dot{q} 2$ (deg/s)'); grid minor

156

www.manaraa.com

56 %saveas(gcf,'ADAPTstates.png')

57

58 figure (2) % ERROR

59 subplot(2,2,1)

60 plot(t,rad2deg(qtilde(1,:)),t,rad2deg(qtilde(2,:)))

61 legend('$\tilde{q} 1$','$\tilde{q} 2$')

62 ylabel('$q i$ Error (deg)');xlabel('time (s)');grid minor

63 %title(['MRAC: λ=',num2str(lam),'$\ K D$=',num2str(K d(1))])

64 subplot(2,2,2)

65 plot(t,rad2deg(qtilde dot(1,:)),t,rad2deg(qtilde dot(2,:)))

66 legend('$\dot{\tilde{q}} 1$','$\dot{\tilde{q}} 2$')

67 ylabel('$\dot{q} i$ Error (deg/s)');xlabel('time (s)');grid minor

68 subplot(2,2,3)

69 plot(t,squeeze(tau(1,:,:)),t,squeeze(tau(2,:,:)))

70 legend('$\tau 1$','$\tau 2$')

71 xlabel('time (s)'); ylabel('$\tau i (N−m)$');grid minor

72 subplot(2,2,4)

73 plot(rad2deg(q1tilde),rad2deg(dq1−dq1 d),...

74 rad2deg(q2tilde),rad2deg(dq2−dq2 d));

75 %title(['\lambda=', num2str(lam),', \eta 1=', num2str(eta1)])

76 xlabel('$\tilde{q} i (deg)$');

77 ylabel('$\dot{\tilde{q}} i (deg/s)$')

78 legend('Joint 1','Joint 2');grid minor

79 %saveas(gcf,'ADAPTerror.png')

80

81 figure (3) % SLIDING SURFACE

82 subplot(2,1,[1 2])

83 plot(t,s);

84 xlabel('t(sec)'); ylabel('$s(t)$');

85 legend('$$s 1$$','$$s 2$$');grid minor

86 title('Sliding Surface')

87 %subplot(2,1,2)

88 %plot(t,phi1,t,phi2,':')

89 %xlabel('t(sec)'); ylabel('ϕ');
90 legend('$$\phi 1$$','$$\phi 2$$');grid minor

91 %title('Time−Varying Boundary Layer')

92 %saveas(gcf,'ADAPTsurface.png')

93

94 figure (4) % PARAMETERS

95 subplot(221)

96 plot(t,a1,t,a1hat,':')

97 legend('$$a 1 \ true$$','$$\hat{a} 1$$')

98 xlabel('time (s)'); grid minor;

99 %title('Parameter Estimation')

100 subplot(222)

101 plot(t,a2,t,a2hat,':')

102 legend('$$a 2 \ true$$','$$\hat{a} 2$$')

157

www.manaraa.com

103 xlabel('time (s)'); grid minor

104 subplot(223)

105 plot(t,a3,t,a3hat,':')

106 legend('$$a 3 \ true$$','$$\hat{a} 3$$')

107 xlabel('time (s)'); grid minor

108 subplot(224)

109 plot(t,a4,t,a4hat,':')

110 legend('$$a 4 \ true$$','$$\hat{a} 4$$')

111 xlabel('time (s)'); grid minor

112 %saveas(gcf,'ADAPTparam.png')

113

114 %% animate

115 % z = [q1'; dq1'; q2'; dq2']; % actual states

116 % A.plotFunc = @(t,z)(drawRobot(t,z,param));

117 % A.speed = 0.25;

118 % A.figNum = 101;

119 % %animate(t,z,A)

120

121 %%

122 function xdot= AdaptiveController(t,X,param)

123 % unpack X = [q1;dq1;q2;dq2]=[q1; dq1; q2; dq2]

124 q1 = X(1); dq1 = X(2); q2 = X(3); dq2 = X(4);

125 a1hat = X(5); a2hat = X(6); a3hat = X(7); a4hat = X(8);

126 ahat=[a1hat, a2hat, a3hat, a4hat];% estimated

127

128 % define parameters

129 g = param.g;

130 m1 = param.m1; me = param.me; % e means link 2 + whatever it's holding

131 L1 = param.L1; delE = param.delE;

132 r1 = param.r1; re = param.re;

133 I1 = param.I1; Ie = param.Ie;

134 me = eval(me); % evaluate the time−changing parameters

135 re = eval(re);

136 Ie = eval(Ie);

137 delE = eval(delE);

138 %

139 K d = param.K d; lam = param.lam;

140 Gamma = param.Gamma;

141

142 % define true parameters/coefficients

143 a1 = I1+m1*r1ˆ2+Ie+me*reˆ2+me*L1ˆ2;

144 a2 = Ie+me*reˆ2;

145 a3 = me*L1*re*cos(delE);

146 a4 = me*L1*re*sin(delE);

147 H11 = a1+2*a3*cos(q2)+2*a4*sin(q2);

148 H22 = a2;

149 H12 = a2+a3*cos(q2)+a4*sin(q2);

158

www.manaraa.com

150 H21 = H12;

151 h = a3*sin(q2)−a4*cos(q2);
152 % G1 = m1*r1*g*cos(q1) + me*g*(re*cos(q1+q2) + L1*cos(q1));

153 % G2 = me*g*re*cos(q1+q2);

154 H mat = [H11 H12; H21 H22];

155 c mat = [−h*dq2 −h*(dq1+dq2); h*dq1 0];

156 % g mat = [G1; G2];

157

158 % Estimated coefficient matrices

159 H11hat = a1hat+2*a3hat*cos(q2)+2*a4hat*sin(q2);

160 H22hat = a2hat;

161 H12hat = a2hat+a3hat*cos(q2)+a4hat*sin(q2);

162 H21hat = H12;

163 hhat = a3hat*sin(q2)−a4hat*cos(q2);
164 % G1 hat = (m1*r1*g*cos(q1) + me*g*(re*cos(q1+q2) + L1*cos(q1)));

165 % G2 hat = (me*g*re*cos(q1+q2));

166 H mathat = [H11hat H12hat; H21hat H22hat];

167 c mathat = [−hhat*dq2 −hhat*(dq1+dq2); hhat*dq1 0];

168 % g mathat = [G1;G2];

169

170 % Desired trajectories

171 [q1 d,dq1 d,ddq1 d,q2 d,dq2 d,ddq2 d]=twoDof DesiredTrajectories(t,param);

172 qtilde = [q1−q1 d; q2−q2 d]; % positions

173 qtilde dot = [dq1−dq1 d; dq2−dq2 d]; % derivatives

174

175 % Calculate s (sliding surface)

176 s = qtilde dot +lam*qtilde;

177

178 % Define reference velocity

179 dq r = [dq1 d;dq2 d]−lam*qtilde;
180 dq1 r = dq r(1); dq2 r = dq r(2);

181 ddq r = [ddq1 d;ddq2 d]−lam*qtilde dot;

182 ddq1 r = ddq r(1); ddq2 r = ddq r(2);

183

184 % Define dynamics matrix (Y) such that H*qdd r+C*qd r+g=Y*a

185 Y11 = ddq1 r;

186 Y12 = ddq2 r;

187 Y21 = 0;

188 Y22 = ddq1 r +ddq2 r;

189 Y13 = (2*ddq1 r +ddq2 r)*cos(q2)−(dq2*dq1 r+dq1*dq2 r+dq2*dq2 r)*sin(q2);

190 Y14 = (2*ddq1 r +ddq2 r)*sin(q2)+(dq2*dq1 r+dq1*dq2 r+dq2*dq2 r)*cos(q2);

191 Y23 = ddq1 r*cos(q2)+dq1*dq1 r*sin(q2);

192 Y24 = ddq1 r*sin(q2)−dq1*dq1 r*cos(q2);

193 Y=[Y11 Y12 Y13 Y14; Y21 Y22 Y23 Y24]; % linear wrt parameters a,ahat

194

195 % Calculate control law (same as Y*ahat−Kd*s)
196 tau = H mathat*[ddq1 r; ddq2 r]+c mathat*[dq1 r;dq2 r]−100*eye(2)*s; ...

159

www.manaraa.com

%+g mathat

197

198 % Adapative Law

199 ahatdot = −Gamma*transpose(Y)*s;
200

201 % Calculate True Response

202 ddQ=inv(H mat)*(tau−c mat*[dq1; dq2]); %−g mat

203 ddq1 = ddQ(1);

204 ddq2 = ddQ(2);

205

206 xdot = [dq1; ddq1; dq2; ddq2; ahatdot];

207 end

208

209 %% Other outputs

210 function [q1 d ,q2 d,dq1 d,dq2 d,qtilde, qtilde dot, tau,s,a rlz,ahat] = ...

AdaptiveControl(t,X,param)

211 % unpack X = [q1;dq1;q2;dq2]=[q1; dq1; q2; dq2]

212 q1 = X(:,1); dq1 = X(:,2); q2 = X(:,3); dq2 = X(:,4);

213 a1hat = X(:,5); a2hat = X(:,6); a3hat = X(:,7); a4hat = X(:,8);

214

215 % define parameters

216 g = param.g;

217 m1 = param.m1; me = param.me; % e means link 2 + whatever it's holding

218 L1 = param.L1; delE = param.delE;

219 r1 = param.r1; re = param.re;

220 I1 = param.I1; Ie = param.Ie;

221 me = eval(me); % evaluate the time−changing parameters

222 re = eval(re);

223 Ie = eval(Ie);

224 delE = eval(delE);

225

226 K d = param.K d; lam = param.lam;

227 Gamma = param.Gamma;

228

229 % define true parameters

230 a1 = I1+m1*r1ˆ2+Ie+me.*re.ˆ2+me.*L1ˆ2;

231 a2 = Ie+me.*re.ˆ2;

232 a3 = me.*L1.*re.*cos(delE);

233 a4 = me.*L1.*re.*sin(delE);

234 % define coefficient matrices

235 H11 = a1+2*a3.*cos(q2)+2*a4.*sin(q2);

236 H22 = a2;

237 H12 = a2+a3.*cos(q2)+a4.*sin(q2);

238 H21 = H12;

239 h = a3.*sin(q2)−a4.*cos(q2);
240 % G1 = m1*r1*g*c1 + m2*g*(r2*c12 + L1*c1); % neglect gravity for now

241 % G2 = m2*g*r2*c12;

160

www.manaraa.com

242 for i=1:length(H11)

243 H mat(:,:,i) = [H11(i) H12(i); H21(i) H22(i)];

244 c mat(:,:,i) = [−h(i)*dq2(i) −h(i)*(dq1(i)+dq2(i)); h(i)*dq1(i) 0];

245 end

246

247 % For output to compare

248 a rlz=[a1, a2, a3, a4]; % real

249 ahat=[a1hat, a2hat, a3hat, a4hat];% estimated

250

251 % Estimated coefficient matrices

252 H11hat = a1hat+2*a3hat.*cos(q2)+2*a4hat.*sin(q2);

253 H22hat = a2hat;

254 H12hat = a2hat+a3hat.*cos(q2)+a4hat.*sin(q2);

255 H21hat = H12;

256 hhat = a3hat.*sin(q2)−a4hat.*cos(q2);
257 % G1 = m1*r1*g*c1 + m2*g*(r2*c12 + L1*c1); % neglect gravity for now

258 % G2 = m2*g*r2*c12;

259 for i=1:length(H11hat)

260 H mathat(:,:,i) = [H11hat(i) H12hat(i); H21hat(i) H22hat(i)];

261 c mathat(:,:,i) = [−hhat(i)*dq2(i) −hhat(i)*(dq1(i)+dq2(i)); ...

hhat(i)*dq1(i) 0];

262 end

263

264 % Desired trajectories

265 [q1 d,dq1 d,ddq1 d,q2 d,dq2 d,ddq2 d]=twoDof DesiredTrajectories(t,param);

266 qtilde = [q1−q1 d, q2−q2 d]'; % positions

267 qtilde dot = [dq1−dq1 d, dq2−dq2 d]'; % derivatives

268

269 % Calculate s (sliding surface)

270 for i=1:length(qtilde)

271 s(:,:,i)= qtilde dot(:,i)+lam.*qtilde(:,i);

272 end

273

274 % Define dynamics matrix (Y)

275 dq r = [dq1 d,dq2 d]'−lam*qtilde; % reference velocity

276 dq1 r = dq r(1,:)'; dq2 r = dq r(2,:)';

277 ddq r = [ddq1 d,ddq2 d]'−lam*qtilde dot;

278 ddq1 r = ddq r(1,:)'; ddq2 r = ddq r(2,:)';

279

280 Y11 = ddq1 r;

281 Y12 = ddq2 r;

282 Y21 = zeros(size(ddq1 r));

283 Y22 = ddq1 r +ddq2 r;

284 Y13 = (2.*ddq1 r +ddq2 r).*cos(q2)−...
285 (dq2.*dq1 r+dq1.*dq2 r+dq2.*dq2 r).*sin(q2);

286 Y14 = (2.*ddq1 r +ddq2 r).*sin(q2)+...

287 (dq2.*dq1 r+dq1.*dq2 r+dq2.*dq2 r).*cos(q2);

161

www.manaraa.com

288 Y23 = ddq1 r.*cos(q2)+dq1.*dq1 r.*sin(q2);

289 Y24 = ddq1 r.*sin(q2)−dq1.*dq1 r.*cos(q2);

290

291 for i=1:length(ddq2 r)

292 Y(:,:,i)=[Y11(i) Y12(i) Y13(i) Y14(i); Y21(i) Y22(i) Y23(i) Y24(i)]; % ...

linear wrt parameters a,ahat

293 end

294

295

296 % Calculate control law (same as Y*ahat−Kd*s)
297 for i = 1:length(H mathat)

298 tau(:,:,i) = H mathat(:,:,i)*[ddq1 r(i); ...

ddq2 r(i)]+c mathat(:,:,i)*[dq1 r(i);dq2 r(i)]−100.*s(:,:,i);%+g mathat

299 end

300

301

302 end

Graph comparison of trajectories

1 %% Plots of Desired trajectory vs Simulated Traj (using FK)

2 % 2d Lt Kyra Schmidt, Feb '19

3 % assumes that one of control laws was run, needs this info already saved:

4 % t, q1, q2, param.inputMethod ==3

5 % A) Plot Reachable Space

6 % B) plot desired trajectory

7 % C) Plot actual/simulated trajectory

8 % D) Plot links for simulation

9

10 %% A) Plot Reachable Space based on Angular Limits of Links

11 % Code mostly from mathworks, path needs to be eval wrt t (t=='double')

12 % ****************************** INPUTS ***********************************
13 theta1 range = −deg2rad(−90.3:2:184.5); % all possible theta1 values

14 theta2 range = −deg2rad(−180.4:2:−0.6); % all possible theta2 values

15 L1 = 1.354; % length of link 1, m(elbow to wrist)

16 L2 = 0.808; % length of link 2, m (wrist + sting)

17 % ***
18 [THETA1,THETA2] = meshgrid(theta1 range,theta2 range); % make grid of all ...

theta values

19 [¬,¬,X,Y]=fwdkin2(THETA1,THETA2,param); % forward kinematics

20

21 figure (100)

22 plot(X(:),Y(:),':','color',[1 0.4 0.6],'DisplayName','Reachable Space');

23 xlabel('$y i$ [m]');ylabel('$z i$ [m]');xlim([0 3]);ylim([−1.5 1.5])

24 legend('show','location','ne');grid on; hold on

25

26 %% B) Plot Desired Trajectory

162

www.manaraa.com

27 y d = 1.346+0.5*sin(2*pi*t);

28 z d = −0.3+0.8*cos(2*pi*t);
29 plot(y d,z d,'DisplayName','Desired Trajectory', 'LineWidth',0.5)

30 addarrows(t,y d,z d,2,170,2.5) % 2 arrows w/ length scaling x2, width 0.3

31

32 %% C) Plot Simulated Trajectory

33 [x 2,y 2,x e,y e]=fwdkin2(q1,q2,param);

34 hold on

35 plot(x e,y e,'DisplayName','Simulated Trajectory', 'LineWidth',0.5)

36

37 %% D) optional: if i want to plot the links too

38 p1=[x 2';y 2']; % position of joint 2 (x;y)

39 p2=[x e';y e']; % position of end (x;y)

40 pos=zeros(3,2,length(x 2)); % initialize matrix

41 for i=1:length(x 2)

42 pos(:,:,i)=[0,0; % origin/joint 1 (x,y)

43 p1(1,i),p1(2,i); % joint 2 (x,y)

44 p2(1,i),p2(2,i)]; % end point (x,y)

45 end

46

47 numFrames=3; % length of pos must be divisible by numFrames

48 plot(0,0,'ks','MarkerSize',12,'LineWidth',3,'DisplayName','Origin')

49 % plot origin

50 for i=linspace(1,length(pos),numFrames)

51 plot(pos(:,1,i),pos(:,2,i),'LineWidth',2,'DisplayName',...

52 ['t=',num2str(t(i),3),' s']) % plot the links

53 end

163

www.manaraa.com

Appendix B. Drawings of Test Fixtures Models

ATI Nano25-E F/T Transducer Drawing

164

www.manaraa.com

IMU Drawing [2]

165

www.manaraa.com

3DM-G Cable Schematic

166

www.manaraa.com

Wing Model Drawing [41]

NACA 0012 Wing Model

for AFIT-3 Balance and Nano25 F/T Transducer

167

www.manaraa.com

MTA Model Support Sting [41]

168

www.manaraa.com

Bibliography

1. Industrial Robot Control System, 2011.

2. 3DM-GX4-15 Inertial Measurement and Vertical Reference Unit (IMU/VRU),
2015.

3. F/T Sensor: Nano25, 2018.

4. Introducing Onvios Dojen Zero Backlash, Cycloidal Gearbox / Speed Reducer,
2018.

5. Carmelo Allegro. MTA CAD Drawings, 2012.

6. Rabeb Ben Amor and Salwa Elloumi. Decentralized Robust Model Reference
Adaptive Control for Interconnected Time-delay Systems. (3):4285–4289, 2004.

7. Gianluca Antonelli, Stefano Chiaverini, and Giuseppe Fusco. A new on-line al-
gorithm for inverse kinematics of robot manipulators ensuring path tracking ca-
pability under joint limits. IEEE Transactions on Robotics and Automation,
19(1):162–167, 2003.

8. H. Harry Asada. Chapter 7: Dynamics. Introduction to Robotics, pages 1–16,
2005.

9. Andrew D. Bower. Investigation of Dynamic Store Separation Out of a
Weapons Bay Cavity Utilizing a Low Speed Wind Tunnel. Master's thesis, Air
Force Institute of Technology, 2017.

10. Himanshu Chaudhary, Rajendra Prasad, and N. Sukavanum. Trajectory tracking
control of scorbot-er v plus robot manipulator based on kinematical approach.
International Journal of Engineering Science and Technology, 4(03):1174–1182,
2012.

11. Vincius Menezes De Oliveira and Walter Fetter Lages. Linear predictive control
of a brachiation robot. In Canadian Conference on Electrical and Computer
Engineering, pages 1518–1521, Ottawa, 2006. IEEE.

12. C. Canudas De Wit, B. Brogliato, P. Noel, A. Aubin, and P. Drevet. Compensa-
tion in Robot Manipulators : Low Velocities. International Journal of Robotics
Research, pages 189–199, 1989.

13. Jacques Denavit and Richard S. Hartenberg. A Kinematic Notation for Lower-
Pair Mechanisms Based on Matrices, 1955.

169

www.manaraa.com

14. Utku Eren, Anna Prach, Baaran Bahadr Koçer, Saa V. Raković, Erdal Kaya-
can, and Behet Açkmeşe. Model Predictive Control in Aerospace Systems: Cur-
rent State and Opportunities. Journal of Guidance, Control, and Dynamics,
40(7):1541–1566, 2017.

15. Charles J. Fallaha, Maarouf Saad, Hadi Youssef Kanaan, and Kamal Al-Haddad.
Sliding-mode robot control with exponential reaching law. IEEE Transactions on
Industrial Electronics, 58(2):600–610, 2011.

16. Roy Featherstone and David Orin. Robot dynamics: Equations and algorithms.
Proceedings-IEEE International Conference on Robotics and Automation,
1:826–834, 2000.

17. Nancy Hall. Wind Tunnel Testing, 2015.

18. Sikandar Hayat and Zareena Kausar. Mobile robot path planning for circular
shaped obstacles using simulated annealing. Proceedings - 2015 International
Conference on Control, Automation and Robotics, ICCAR 2015, pages 69–
73, 2015.

19. Renato V. B. Henriques and Jos Jaime da Cruz. Robust Position Control of
Mechanical Manipulators. IFAC Proceedings Volumes, 33(27):93–97, 2000.

20. Dmitry I. Ignatyev, Maria E. Sidoryuk, Konstantin A. Kolinko, and Alexander N.
Khrabrov. Wind Tunnel Three-Degree-of-Freedom Dynamic Rig for Control Val-
idation. 30th Congress of the International Council of the Aeronautical
Sciences, pages 1–11, 2016.

21. Jerry E. Jenkins. The Care, Feeding, and Measurement of Dynamic
Stability Derivatives. 2007.

22. G. Josin, D. Charney, and D. White. Robot Control Using Neural Networks. In
International Conference on Neural Networks, pages 625–631, San Diego, 1988.
IEEE.

23. Norihiko Kato, Kenji Matsuda, and Tatsuya Nakamura. Adaptive control for
a throwing motion of a 2 DOF robot. Proceedings of 4th IEEE International
Workshop on Advanced Motion Control - AMC ’96 - MIE, 1:203–207, 1996.

24. Rafael Kelly and Ricardo Salgado. PD Control with Computed Feedforward of
Robot Manipulators: A Design Procedure. IEEE Transactions on Robotics and
Automation, 10(4):566–571, 1994.

25. T. C. Kuo, B. W. Hong, Y. J. Huang, and C. Y. Chen. Adaptive Fuzzy Controller
Design for Robotic Manipulators with Sliding Mode Control. In IEEE
International Conference On Fuzzy Systems, pages 581–586, Hong Kong, 2008.

170

www.manaraa.com

26. James C. Lancaster. Characterization of a Robotic Manipulator for Dynamic
Wind Tunnel Applications. Master's thesis, Air Force Institute of Technology,
2015.

27. Henry Mcdonald, James Ross, David Driver, and Stephen Smith. Wind Tunnels
and Flight. page 19, 2000.

28. Richard M. Murray, Li Zexiang, and Shankar S. Sastry. A Mathematical Intro-
duction to Robotic Manipulation, volume 4. CRC Press LLC, 1994.

29. Yoshihiko Nakamura and Hideo Hanafusa. Inverse Kinematic Solutions With
Singularity Robustness for Robot Manipulator Control. Journal of Dynamic Sys-
tems, Measurement, and Control, 108(3):163, 1986.

30. Milad Nazarahari, Esmaeel Khanmirza, and Samira Doostie. Multi-objective
multi-robot path planning in continuous environment using an enhanced genetic
algorithm. Expert Systems with Applications, 115:106–120, 2019.

31. Robert C. Nelson. Flight Stability and Automatic Control. McGraw-Hill, Singa-
pore, 2 edition, 1998.

32. Katsuhiko Ogata. Modern Control Engineering. Prentice-Hall, Upper Saddle
River, NJ, 5th edition, 2010.

33. Stelian Emilian Olean and Alexandru Morar. Simulation of the Local Model Ref-
erence Adaptive Control of the Robotic Arm with D.C. Motor Drive. Mediamira,
pages 114–118, 2010.

34. John Pattinson, Mark Lowenberg, and Mikhail Goman. A Multi-Degree-of-
Freedom Rig for the Wind Tunnel Determination of Dynamic Data. AIAA At-
mospheric Flight Mechanics Conference, (August), 2009.

35. Farzin Piltan, Nasri Sulaiman, Hagar Nasiri, Sadeq Allahdadi, and Mohammad A.
Bairami. Novel Robot Manipulator Adaptive Artificial Control : Design a Novel
SISO Adaptive Fuzzy Sliding Algorithm Inverse Dynamic Like Method. Interna-
tional Journal of Engineering (IJE), Volume (5) : Issue (5) : 2011, (5):399–418,
2011.

36. A. Chennakesava Reddy. Difference Between Denavit - Hartenberg (D-H) Clas-
sical and Modified Conventions for Forward Kinematics of Robots With Case
Study. International Conference on Advanced Materials and manufacturing Tech-
nologies, (figure 1):267–286, 2014.

37. Don Riley. 3D Puma Robot Demo, 2007.

38. Patrick Rowe. Motion Test Apparatus (MTA) Manipulator User Manual. Tech-
nical report, RE2, Inc., 2014.

171

www.manaraa.com

39. Viboon Sangveraphunsiri and Kummun Chooprasird. Dynamics and control of a
5-DOF manipulator based on an H-4 parallel mechanism. International Journal
of Advanced Manufacturing Technology, 52(1-4):343–364, 2011.

40. Victor Santibáñez and Rafael Kelly. Strict Lyapunov functions for control of robot
manipulators. Automatica, 33(4):675–682, 1997.

41. James B. A. Sellers. Force and Moment Measurements Applicable to a
Flexible Weapons System. Master's thesis, Air Force Institute of Technology,
2016.

42. James B. A. Sellers, Andrew D. Bower, Ian Maatz, and Mark F. Reeder. Dynamic
Measurement of Forces and Moments with the Motion Test Apparatus. In 55th
AIAA Aerospace Sciences Meeting, pages 1–10, Grapevine, 2017. AIAA.

43. Ali Dokht Shakibjoo and Mohammad Dokht Shakibjoo. 2-DOF PID with reset
controller for 4-DOF robot arm manipulator. 2015 International Conference on
Advanced Robotics and Intelligent Systems, ARIS 2015, 2015.

44. Chao Shen, Yang Shi, and Brad Buckham. Trajectory Tracking Control of an Au-
tonomous Underwater Vehicle Using Lyapunov-Based Model Predictive Control.
IEEE Transactions on Industrial Electronics, 65(7):5796–5805, 2018.

45. Jean-Jacques E. Slotine and Weiping Li. Applied Nonlinear Control. Prentice-
Hall, Upper Saddle River, 1991.

46. Mark W. Spong, Seth Hutchinson, and M. Vidyasagar. Robot dynamics and
control, volume 2. 2004.

47. Tung-Ching Tsao and Michael G. Safonov. Unfalsified Direct Adaptive Control of
a Two-Link Robot Arm. In Proceedingsof the 1999 IEEE InternationalCon-
ferenceon ControlApplications, volume 1, pages 680–686, Kohala Coast-Island of
Hawaii, 1999. IEEE.

48. Spyros G. Tzafestas, G. Stavrakakis, and A. Zagorianos. Robot model refer-
ence adaptive control through lower/upper part dynamic decoupling. Journal of
Intelligent & Robotic Systems, 1(2):163–184, 1988.

49. S. N. Van Den Brink. Modelling and control of a robotic arm actuated by nonlinear
artificial muscles. PhD thesis, Technische Universiteit Eindhoven, 2007.

50. C. W. Wampler II. Manipulator inverse kinematic solutions based on vector
formulations and damped least-squares methods. IEEE Transactions on Systems,
Man and Cybernetics, 16(1):93–101, 1986.

51. Chia-Yu E. Wang, Wojciech K. Timoszyk, and James E. Bobrow. Weightlifting
Motion Planning For A Puma 762 Robot. In International Conference on Robotics
& Automation, number May, pages 480–485. IEEE, 1999.

172

www.manaraa.com

52. D. E. Whitney. Resolved motion rate control of manipulators and human pros-
theses. IEEE Transactions on Man-Machine Systems, 10(2):47–52, 1969.

53. Robert L. Williams. NotesBook Supplement for EE/ME 4290/5290 Mechanics
and Control of Robotic Manipulators, 2019.

173

www.manaraa.com

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER 19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

02–11–2019 Master’s Thesis July 2018 — Mar 2019

ANALYTICAL MODELS AND CONTROL DESIGN APPROACHES
FOR A 6 DOF MOTION TEST APPARATUS

Kyra L. Schmidt

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENY-MS-19-M-245

Department of Aeronautical Engineering
2950 Hobson Way
WPAFB OH 45433-7765
DSN 785-6565x4559, COMM 937-255-3636
Email: richard.cobb@afit.edu

AFRL/RW

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Wind tunnels play an indispensable role in the process of aircraft design, providing a test bed to produce valuable,
accurate data that can be extrapolated to actual flight conditions. Historically, time-averaged data has made up the bulk
of wind tunnel research, but modern flight design necessitates the use of dynamic wind tunnel testing to provide
time-accurate data for high frequency motion. This research explores the use of a 6 degree of freedom (DOF) motion test
apparatus (MTA) in the form of a robotic arm to allow models inside a subsonic wind tunnel to track prescribed
trajectories to obtain time-accurate force and moment coefficients. Specifically, different control laws were designed,
simulated, and integrated into a 2 DOF model representative of the elbow pitch and wrist pitch joints of the MTA
system to decrease positional tracking error for a desired end-effector trajectory. Stability of the closed-loop systems was
proven via Lyapunov analysis for all of the control laws, and the control laws proved to decrease tracking error during the
trajectory case studies. An adaptive sliding mode control scheme was chosen as most suitable to simulate on the 6 DOF
model due to the small tracking error as compared to the other control schemes and the availability of parameters of the
actual MTA system when subject to the time-varying aerodynamics of the wind tunnel.

control, robotic manipulator, simulation

U U U U

OF
PAGES

187
Dr. Richard Cobb, AFIT/ENY

(312) 785-3636, x4559; richard.cobb@afit.edu

	Air Force Institute of Technology
	AFIT Scholar
	3-21-2019

	Analytical Models and Control Design Approaches for a 6 DOF Motion Test Apparatus
	Kyra L. Schmidt
	Recommended Citation

	tmp.1564752757.pdf.vxRBM

